====== HyperFun for Windows: Graphics and Animation ======
===== Static images =====
The images below (except the isosurface) are generated using the following model:
fsin(x[2], a[1]){
d=x[1]^2+x[2]^2;
fsin = sin(d)*exp(-sqrt(d));
}
The table below shows the available image types and corresponding assignement of coordinates X Assign and function F Assign.
Click on an image below to get its larger size version.
|[[http://hyperfun.org/HFW/plot.jpg|{{http://hyperfun.org/HFW/plot150.jpg}}]]|Plot y=f(x,c)\\ x[1] -> X axis\\ x[2] -> 0\\ f -> Y axis |[[http://hyperfun.org/HFW/plot-g.jpg|{{http://hyperfun.org/HFW/plot-g150.jpg}}]]|Group plot y=f(x,ci)\\ x[1] -> X axis\\ x[2] -> Group value\\ f -> Y axis|
|[[http://hyperfun.org/HFW/contour.jpg|{{http://hyperfun.org/HFW/contour.jpg?150}}]]|Contour line f(x,y)=c\\ x[1] -> X axis\\ x[2] -> Y axis\\ f -> 0|[[http://hyperfun.org/HFW/map.jpg|{{http://hyperfun.org/HFW/map.jpg?150}}]]|Contour map f(x,y)=ci\\ x[1] -> X axis\\ x[2] -> Y axis\\ f -> Group value|
|[[http://hyperfun.org/HFW/surf.jpg|{{http://hyperfun.org/HFW/surf150.jpg}}]]|Surface z=f(x,y)\\ x[1] -> X axis\\ x[2] -> Y axis\\ f -> Z axis|[[http://hyperfun.org/HFW/isosurf.jpg|{{http://hyperfun.org/HFW/isosurf150.jpg}}]]|Isosurface f(x,y,z)=c\\ x[1] -> X axis\\ x[2] -> Y axis\\ x[3] -> Z axis\\ f -> 0\\ (see model below)|
The isosurface above is generated using the model:
torus(x[3], a[1]){
array center[3];
center = [0, 0, 0];
torus = hfTorusY(x,center,7,3);
}
===== Animation =====
The above image types can be time-dependent with using mapping of an additional coordinate to a **Time variable.**\\
For example, for the model:
fsin(x[3], a[1]){
d=x[1]^2+x[2]^2;
fsin = sin(d+x[3])*exp(-sqrt(d));
}
* Define a time-dependent plot y=f(x,t):\\ x[1] -> X axis\\ x[2] -> 0\\ x[3] -> T1 time variable\\ f -> Y axis
* Define the Time Curve for x[3]
* Generate [[http://hyperfun.org/HFW/dplot160.avi|animation (AVI, 410K)]].