===== Let's try to shift, scale, rotate objects =====
==== Let's try to shift objects ====
Array x in my_model(x[3], a[1]) includes coordinates in three dimensions. The corresponding relationship is,
x[1] -> x
x[2] -> y
x[3] -> z
The following is an equation of a solid sphere which has its center as the origin and a radius of 5:
5^2 - (x^2 + y^2 + z^2) >= 0
The model in HyperFun:
my_model(x[3], a[1])
{
sphere = 5.0^2 - (x[1]^2 + x[2]^2 + x[3]^2);
my_model = sphere;
}
{{http://hyperfun.org/Tut_HTML_e/images/sphere_shift_0.jpg?nolink}}
What is the difference between these two equations: 5^2 - ((x-5)^2 + y^2 + z^2) >= 0 and 5^2 - (x^2 + y^2 + z^2) >= 0? We will experiment with two equations in HyperFun.
my_model(x[3], a[1])
{
sphere = 5.0^2 - ((x[1]-5.0)^2 + x[2]^2 + x[3]^2);
my_model = sphere;
}
{{http://hyperfun.org/Tut_HTML_e/images/sphere_shift_x_plus_5.jpg?nolink}}
Then what is the difference between these two equations: 5^2 - ((x+5)^2 + y^2 + z^2) >= 0 and 5^2 - (x^2 + y^2 + z^2) >= 0? We will experiment with two equations in HyperFun.
my_model(x[3], a[1])
{
sphere = 5.0^2 - ((x[1]+5.0)^2 + x[2]^2 + x[3]^2);
my_model = sphere;
}
{{http://hyperfun.org/Tut_HTML_e/images/sphere_shift_x_minus_5.jpg?nolink}}
The result of experiments with HyperFun shows us that replacing x with x//-5// is equal to moving only 5 in the positive direction of the x-axis, and replacing x with x//+5// is equal to moving only 5 in the negative direction of the x-axis.
Question:
Given the equation 100 - (x^2y^2 + y^2z^2+z^2x^2) >= 0, how is this equation moved only 5 in the positive direction of the x-axis?
Answer:
100 - ((x-5)^2y^2 + y^2z^2 + z^2(x-5)^2) >= 0
Let's try to shift the sphere in the direction of the y-axis, the z-axis.
In HyperFun, there is only one operation for shifting in 3D space: [[lib_shift|hfShift3D]]
==== Let's try to scale objects ====
First let's make a sphere, which has its center as the origin and a radius of 5.
my_model(x[3], a[1])
{
sphere = 5.0^2 - (x[1]^2 + x[2]^2 + x[3]^2);
my_model = sphere;
}
{{http://hyperfun.org/Tut_HTML_e/images/sphere_shift_0.jpg?nolink}}\\
5^2 - (x^2 + y^2 + z^2) >= 0
What is the dirference between these two equations: 5^2 - ((x/2)^2 + y^2 + z^2) >= 0 and 5^2 - (x^2 + y^2 + z^2) >= 0? We will experiment in HyperFun, replacing x[1] with x[1]/2.
my_model(x[3], a[1])
{
sphere = 5.0^2 - ((x[1]/2)^2 + x[2]^2 + x[3]^2);
my_model = sphere;
}
{{http://hyperfun.org/Tut_HTML_e/images/sphere_scale_x_double.jpg?nolink}}\\
5^2 - ((x/2)^2 + y^2 + z^2) >= 0
What is the dirference between these two equations: 5^2 - ((x*2)^2 + y^2 + z^2) >= 0 and 5^2 - (x^2 + y^2 + z^2) >= 0? We will experiment in HyperFun, replacing x[1] with x[1]*2.
my_model(x[3], a[1])
{
sphere = 5.0^2 - ((x[1]*2)^2 + x[2]^2 + x[3]^2);
my_model = sphere;
}
{{http://hyperfun.org/Tut_HTML_e/images/sphere_scale_x_half.jpg?nolink}}\\
5^2 - ((x*2)^2 + y^2 + z^2) >= 0
As the result of experimenting with HyperFun, a sphere is scaled twice with the x-axis, replacing x with x/2, a sphere is scaled 1/2 times with the x-axis, replacing x with x*2.
Let's try to scale the sphere with y-axis, z-axis in the same way.
In HyperFun, there is only one operation for scaling: [[lib_scale|hfScale3D]]
==== Let's try to rotate objects ====
Rotating at s radian in three dimension around the z-axis is described in HyperFun as follows, (s radian is //pi*s/180// degree.)
x' = x cos(s) + y sin(s)
y' = y cos(s) - x sin(s)
z' = z
We will experiment with the upper expressions in HyperFun.
my_model(x[3], a[1])
{
array xt[3];
pi = 3.14159;
deg2rad = pi/180.0;
sphere1 = 3.0^2 - ((x[1] - 5)^2 + x[2]^2 + x[3]^2);
xt[1] = x[1]*cos(deg2rad*90.0) + x[2]*sin(deg2rad*90.0);
xt[2] = x[2]*cos(deg2rad*90.0) - x[1]*sin(deg2rad*90.0);
xt[3] = x[3];
sphere2 = 3.0^2 - ((xt[1] - 5)^2 + xt[2]^2 + xt[3]^2);
my_model = sphere1 | sphere2;
}
{{http://hyperfun.org/Tut_HTML_e/images/sphere_rotate.jpg?nolink}}
The sphere1 is a sphere which has the center of (5, 0, 0) and a radius of 3. The sphere2 is the sphere1 which is rotated at a 90 angle around the z-axis. As the result of using the upper expressions, we can make a sphere rotate at a 90 angle around the z-axis.
The following expressions are ones of rotation around y-axis and z-axis.
Let's try to use them.
Expressions of rotation around y-axis.
x' = x cos(s) - z sin(s)
y' = y
z' = x cos(s) + z sin(s)
Expressions of rotation around x-axis.
x' = x
y' = y cos(s) + z sin(s)
z' = z cos(s) - y sin(s)
In HyperFun, there are three operations for rotation: [[lib_rotate|hfRotate3DZ]] (rotation around z-axis), [[lib_rotate|hfRotate3DY]] (rotation around y-axis), [[lib_rotate|hfRotate3DX]] (rotation around x-axis).