
BSP-fields: An Exact Representation of Polygonal

Objects by Differentiable Scalar Fields Based on Binary

Space Partitioning

Oleg Fryazinov, Alexander Pasko, Valery Adzhiev

Bournemouth University, UK

Abstract

The problem considered in this work is to find a dimension independent algo-
rithm for the generation of signed scalar fields exactly representing polygonal
objects and satisfying the following requirements: the defining real function
takes zero value exactly at the polygonal object boundary; no extra zero-value
isosurfaces should be generated; C1 continuity of the function in the entire
domain. The proposed algorithms are based on the binary space partitioning
(BSP) of the object by the planes passing through the polygonal faces and
are independent of the object genus, the number of disjoint components, and
holes in the initial polygonal mesh. Several extensions to the basic algorithm
are proposed to satisfy the selected optimization criteria. The generated
BSP-fields allow for applying techniques of the function-based modeling to
already existing legacy objects from CAD and computer animation areas,
which is illustrated by several examples.

Key words: Implicit surfaces, Boundary representation, Function
representation, Binary Space Partitioning, BSP-field, Exact Conversion

1. Introduction

Representations of geometric objects by continuous and discrete (sam-
pled) scalar fields have recently attracted a lot of attention from both research
and application points of view. This is due to many useful properties of such
objects. Several modeling operations have been formulated specifically for
objects defined by scalar fields, for example, controllable blending operations,
offsetting, metamorphosis with arbitrarily changing topology, sweeping, and

Preprint submitted to Computer-Aided Design November 22, 2010

others [6][20][30][22]. Scalar field models are quite suitable, for example, for
the reconstruction from large clouds of points [31][19] and for the description
of internal material distribution [5][12].

There is a large legacy of polygonal objects created in CAD, computer
animation, and other areas. The availability of new above-mentioned mod-
eling operations and application areas stimulates the search for methods for
the conversion of 2D polygons and 3D polygonal objects to representations
by zero-level sets (2D contours and 3D isosurfaces) of scalar fields. For exam-
ple, two polygonal meshes converted to scalar fields can be blended together
with a smooth transition between two surfaces. Some promising application
areas for converted meshes are function-based volume modeling and render-
ing, especially for objects with multiple materials in CAD as well as in rapid
prototyping and fabrication; simulation of different physical properties of
objects in medicine and geology [13].

Approximate and exact (up to the finite precision of computing scalar field
values) representations have to be distinguished. Exact representations allow
for the derivation of an analytical expression for the function, which then can
be evaluated with the finite machine precision. Approximate representations
allow for a built-in error in the numerical function evaluation within the given
maximal approximation error. Several known approximations of polygonal
objects by scalar field isosurfaces are suitable for visualization, animation,
re-meshing and other purposes. On the other hand, approximation errors
can be critical and even fatal in some applications such as computer-aided
manufacturing and medical simulations [25].

An exact representation can be obtained using signed Euclidean distance
from a given point to the polygonal mesh [24]. The main problem with this
solution is that the Euclidean distance is not C1-continuous and has points
with the derivatives discontinuity (vanishing gradients) in its domain, which
can cause appearance of unexpected artefacts in results of further operations
on the object [4][12]. When applying blending to such objects, unexpected
creases can appear on the smooth transition surface. In material design,
areas with vanishing gradients can create additional unwanted stresses inside
fabricated objects.

A problem with some conversion methods [7][33][35][37] is that they gen-
erate not only the desired approximating zero-value isosurface but some ad-
ditional isosurfaces inside or outside the considered solid object. Such ad-
ditional internal or external zero-value points can be wrongly classified as
object’s boundary points and thus damage an application [27] (see Fig. 1).

2

Another concern is providing the distance property of the defining scalar
field, which has to change its sign at the object boundary and its absolute
values have to increase with the growing distance from the object surface.
Additional zero-value isosurfaces destroy the distance property of the scalar
field, which is important in further operations on objects, for example, in
offsetting, blending, and material properties modeling.

In contrast to the existing conversion methods, the problem considered in
this paper is to find an algorithm for generation of scalar fields describing 2D
and 3D polygonal objects with defining real functions satisfying the following
requirements:

• the function takes zero value exactly at the points of polygonal object
boundary and has different signs for internal and external points;

• no extra zero-value isosurfaces should be generated;

• C1 continuity of the function in the entire domain.

The solution to this problem exists for polygons in two-dimensional space
[23][26]. A 2D polygon can be exactly described by a continuous real function
of two variables built using a monotone set-theoretic formula (see Fig. 1e and
details in the next section), which guarantees a well-formed set representation
of the polygon [27]. This solution produces a function with zero values only at
the polygon edges and no additional internal or external zero-value contours
are generated. For 3D space it is a long-standing unsolved problem. The
monotone formula has no direct extension to the 3D polygonal object case.
Therefore, the best solution would be to devise an algorithm with a dimension
independent formulation such that it can directly be applied in 2D, 3D and
higher dimensional space.

The main contributions of this paper are: 1) a new algorithm for the con-
struction of the well-formed set-theoretic representation for the given polyg-
onal object; 2) an algorithm for the procedural scalar field evaluation at
the given point and 3) several extensions to the basic algorithms to satisfy
the optimization criteria. The proposed algorithms are based on the binary
space partitioning (BSP) of the object by the planes passing through the
polygonal faces. The constructed BSP-tree structure is used to generate the
set-theoretic expression procedurally with one to four set operations assigned
to each internal node of the tree, and a halfspace assigned to each tree leaf
corresponding to a partitioning plane. The scalar field is generated when

3

(a) (b) (c)

(d) (e)

Figure 1: Existing methods to construct the scalar field for the given polygon in two-
dimensional space: a) initial polygon; b) cell decomposition; c) convex decomposition; d)
BSP CSG; e) monotone formula. Zero sets are indicated by black colour. The colour
scheme is described of Fig. 6.

4

we use some type of R-functions in the tree nodes and defining functions of
halfspaces in the leaves. Due to the nature of BSP, this algorithm is dimen-
sion independent after the step of the BSP-tree construction for the given
polygonal object of arbitrary dimensionality. The BSP-tree optimization is
discussed and some extensions of the basic tree construction algorithm are
proposed. We also provide several examples that illustrate applications of
BSP-fields describing polygonal objects.

2. Previous works

We discuss in this section several classes of methods for the conversion of
polygonal objects to scalar field representations. They are both continuous
and discrete field approximations as well as exact representations utilizing
distance functions and different versions of set-theoretic expressions.

Approximation methods based on blobby models [16], radial-basis func-
tions (RBF) [31][40], and multi-level partition of unity implicits (MPU) [19]
produce a single isosurface which can approximate a given cloud of polyg-
onal mesh vertices. While highly complicated meshes with huge number of
vertices are well approximated, simple objects with the small number of ver-
tices have rather big approximation errors when distances to polygonal faces
are taken into account. The approximation with the compactly supported
radial basis functions (CSRBF) [17] has problems of creating bumpy surfaces
and additional unwanted zero-value isosurfaces not passing through the given
vertices. The polygonal mesh approximation method based on moving least
squares (MLS) [29] deals with undesirable oscillations by adding points with
normal constraints across the surface of each polygonal face. This method
allows for obtaining an exact mesh respresentation, however, either the result
is a function with discontinuities or the numerical calculations can become
unstable in the neighborhood of the polygon as pointed out by the authors.

The piecewise linear approximation of the signed distance function [36]
allows for a multiresolution representation of the given mesh with the fast
evaluation of the approximate distance. This method involves the binary
space partitioning in a way different from our approach. Another approxi-
mation method of the signed distance function for a 3D mesh interpolates
between distance functions of its planar cross-sections [8]. A pseudo-distance
function is used in the HybridTree [1], which allows for polygonal meshes to
act as implicit surface primitives in various free-form modeling operations.

5

Discrete approximation methods sample signed distance or some other
continuous function at the nodes of a regular volumetric grid or an octree grid
[11][14]. A physics-based level set method was used in [41] to approximately
reconstruct a given polygonal surface with normal constraints by a discrete
scalar field sampled initially with signed distance function values.

Continuous and discrete scalar field approximations of polygonal meshes
are useful for mesh repair, re-meshing, rendering, object carving, animation,
and metamorphosis. However, errors inherent to approximation methods are
not acceptable in some critical applications such as computer-aided manu-
facturing, material distribution modeling [5], and medical simulations [25].

A polygonal mesh can be exactly represented by a zero-level isosurface of
the signed distance function of the given point and the mesh polygons. This
allows for offsetting, metamorphosis, smoothing, set operations and other
object manipulations [24] to be applied to polygonal meshes. The points of
C1 distance function discontinuity form curves and surfaces in space that
can cause appearance of unexpected edges in results of further operations
such as blending, additional areas of stresses in strength analysis, and other
problems. The approach introduced in [4] allows to define the polygonal
mesh as a zero-set of a continuous function, but it solves only a part of the
problem stated above, because the obtained function has the same sign inside
and outside the polygonal object. Therefore, the entire polygonal object is
not represented as a solid with its inside and outside distinguished by the
function.

Another general approach to the exact conversion is to describe a solid
object with the given polygonal boundary using set-theoretic (or simply set)
operations on the supporting halfspaces bounded by planes (straight lines in
2D) passing through polygonal faces (edges in 2D). In the general case these
operations can be applied to additional planar halfspaces. The theoretical
basis for this approach is given by the Beynon theorem [3], which implies
that a piecewise linear function defining a polyhedron can be expressed by
applying pointwise min and max operations to a finite set of linear functions.
When a set-theoretic expression is obtained, one can formally define the
scalar field by replacing the halfspaces by their defining linear functions and
using min/max functions (or other R-functions as explained below) for the
set-theoretic operations. An R-function is a real function of several variables
with its sign depending only on the signs of its arguments, not their values
(see [28] for more details).

An object resulting from the set-theoretic operations has the defining

6

function expressed as follows:
f3 = f1 ∨α f2 for the union;
f3 = f1 ∧α f2 for the intersection,
where f1 and f2 are defining functions of initial objects and ∨α, ∧α are
signs of R-functions. One of the classes of R-functions is

f1 ∨1 f2 = max(f1, f2)
f1 ∧1 f2 = min(f1, f2)

(1)

These functions are C1 discontinuous at all points where f1 = f2. R-
functions of another class are:

f1 ∨0 f2 = f1 + f2 +
√

f 2

1
+ f 2

2

f1 ∧0 f2 = f1 + f2 −
√

f 2

1
+ f 2

2

(2)

They have C1 discontinuity only at points where both arguments are equal
to zero. A recently proposed class of R-functions called SARDF (Signed
Approximate Real Distance Function) operations [12] provides smooth ap-
proximation of the min/max operations and therefore of the signed distance
functions for complex objects constructed using set-theoretic operations. The
distance property of a defining function is important in several applications
such as rendering and shape metamorphosis in computer graphics, aesthetic
design, modeling material properties of objects in layered manufacturing,
formulation of boundary conditions in engineering analysis, modeling offsets
in computer-aided design, and others [4].

There are several approaches to constructing set-theoretic representations
of a given polyhedron. A convex polyhedron is an intersection of all support-
ing halfspaces. A concave polyhedron has to be represented by set operations
on specially selected convex polyhedra or its own supporting halfspaces. The
cell partition [33] results in the representation of a concave polyhedron as
union of its convex parts (cells). These convex cells share common faces
inside the initial polyhedron. When R-functions are applied to get the poly-
hedron’s defining function, ”internal zeroes” appear at the points of all shared
internal faces (see Fig. 1b). Similar effects occur when applying the more
general BRep-CSG conversion algorithm to the polygonal mesh [7] (see Fig.
1d).

In the convex decomposition of 2D polygons [37][35], a polygon is repre-
sented by its convex hull with some inner regions subtracted. These inner re-
gions are processed recursively in the same manner to generate lower levels of

7

the convex decomposition. The application of min/max or other R-functions
to this representation leads to the appearance of ”external zeroes” at the
edges of the nested convex hulls with the disadvantages discussed earlier (see
Fig. 1c).

The optimal set-theoretic expression of a 2D polygon called a monotone
formula [26][23] includes each of the supporting halfplanes only once and does
not include any additional halfplane. An efficient algorithm for deriving this
representation from an arbitrary given polygon was proposed in [9]. The
remarkable property of the monotone formula is that it does not generate
any internal or external zeroes when applying R-functions (see Fig. 1e).

It is difficult to extend exact 2D conversion algorithms to 3D polyhedra.
Unfortunately, an analogue of the monotone formula for 3D polyhedra is not
known. A representation of a 3D concave polyhedron by a series of convex
components with alternating signs (for union and difference operations) [38]
allows for obtaining a set-theoretic expression for the given polyhedron, how-
ever in case of non-convergence [39][15] this method is not applicable directly.
There is a need of a dimension independent conversion algorithm, which can
be applied directly to polygons in 2D, polyhedra in 3D and to higher dimen-
sional polytopes. In this paper, we propose a novel approach to the exact
conversion of polygonal objects to corresponding scalar fields.

3. Scalar fields based on BSP-trees

In this section we present our approach to the exact conversion. We
suppose that the initial polygonal object is a closed oriented manifold and
contains no degenerate boundary elements. If these requirements are not
satisfied, the resulting scalar field will not be an exact representation in the
general case.

First, we consider a set-theoretic construction of a 2D polygon as a rep-
resentative of the general case problem. We show in subsection 3.1 that the
existing methods are not satisfactory in terms of the above requirements to
the scalar field. Then, we propose original algebraic and set-theoretic so-
lutions to the given 2D problem (sections 3.2 and 3.3) and the proposed
solution is applied in section 3.4 to devise a basic dimension independent
algorithm and its optimizations for the exact conversion.

8

Figure 2: A simple polygon (green) constructed from three planar halfspaces: A (grey)
with the boundary line ST, B (yellow and green left to the line ST), C (blue and green
right to the line ST).

3.1. Construction of a scalar field for a simple 2D polygon

As an introduction to our approach, let us consider the set-theoretic con-
struction of a simple polygon on a 2D plane from three semi-infinite planar
halfspaces as shown in Fig. 2. Three intersecting halfspaces A, B, C are
given as follows: A (shown in grey in Fig. 2) with the boundary straight
line ST; B (green area left to the line ST and yellow area) with the bound-
ary DEFGHIJK; C (blue area and green area right to the line ST) with the
boundary LMNOPQR. The boundaries of B and C intersect in the points
S and T. The problem is to construct a defining function f(x, y) for the
simple polygon IJSMNOPQTEFGH (shown in green in Fig. 2) such that
f(x, y) = 0 only at the points of the polygon boundary, f(x, y) > 0 inside
the polygon, and f(x, y) < 0 outside the polygon. The function has to
be C1 continuous everywhere except the polygon boundary, where only C0

continuity is allowed. Note that no internal or external non-boundary points
are allowed to have zero function value or zero function gradient value.

The presented 2D problem can be simply solved by using a monotone
formula [26][23][9] mentioned above. However, as it was stated an extension
of the monotone formula construction algorithm to the case of 3D polyhe-

9

drons is problematic. Therefore, we are looking for an alternative dimension
independent solution.

3.2. Algebraic approach
We can follow the idea of [32] that, if one can independently construct

two models of the object, one with external zeroes and another with internal
zeroes, then an algebraic sum of two corresponding defining functions does
not have non-boundary (internal or external) zero points.

This approach is illustrated by Figs. 3 and 4 for our example. The
construction of a polygon with external zeroes of the defining function is
shown in Fig. 3. Two halfspaces (¬A ∪ B) (Fig. 3a) and (A ∪ C)
(Fig. 3b) have common parts of their boundaries along rays TU and SW.
When these two halfspaces intersect, they form the desired polygon with two
mentioned rays attached to its boundaries (Fig. 3c). The defining function
constructed using the obtained set-theoretic expression and R-functions is as
follows:

fp ext = (−fA ∨α fB) ∧α (fA ∨α fC) (3)

where fA, fB, fC are defining functions of the initial halfspaces A, B,
and C, and ∧α, ∨α are symbols of R-functions for union and intersection
correspondingly. This function takes zero values at the points of the rays TU
and SW, thus creating external zeroes of the polygon.

The construction of a polygon with internal zeroes of the defining function
(Fig. 4) is based on a kind of cell partitioning [7] (see Fig. 1d). The
boundaries of two halfspaces (A ∩ B) (Fig. 4a) and (¬A ∩ C) (Fig. 4b)
share the segment ST. After applying union operation to these halfspaces
we obtain the desired polygon (Fig. 4c). The defining function constructed
using the set-theoretic expression and R-functions is as follows:

fp int = (fA ∧α fB) ∨α (−fA ∧α fC) (4)

This defining function for the polygon takes zero values at its boundaries.
Additionally, the function takes zero values at the internal segment ST, which
becomes a set of points with internal zeroes in respect to the polygon.

The polygon defining function without external and internal zeroes can
be constructed from the functions in Eq. 3 and Eq. 4 using algebraic
summation:

fp = fp ext + fp int (5)

In total, the evaluation of the function fp requires applying six R-functions
and one algebraic summation.

10

(a) (b)

(c)

Figure 3: Construction of a polygon with external zeroes of the defining function

11

(a) (b)

(c)

Figure 4: Cell partition of the polygon with internal zeroes of the defining function at the
points of the segment ST

12

3.3. Proposed set-theoretic approach

We propose to directly construct a set-theoretic expression for the polygon
in such a way that the corresponding defining function does not have internal
or external zeroes. To prevent extra zero sets, every point in the interior of
the resulting polygon has to be in the interior of some area (argument of a
set operation) such that the union and intersection operations ensure that
the gradient at the point will be well defined.

The proposed steps of the set-theoretic construction of a polygon with
the defining function without non-boundary zeroes are shown in Fig. 5. At
each step, either the union or the intersection operation is applied to planar
regions, which do not share boundary elements inside or outside the desired
polygon. This guarantees the defining function without internal and external
zeros. The defining function constructed using the set-theoretic expression
shown in Fig. 5d and R-functions is as follows:

fs = ((fA ∨α fC) ∧α fB) ∨α (−fA ∧α fC) (6)

In total, the evaluation of the function fs requires applying four R-
functions. Another advantage of using only set-theoretic operations to con-
struct the polygon, if compared with the algebraic approach, is that instead
of standard R-functions with square roots we can apply SARDF-operations
[12] to get smoothly approximated distance field for the polygon.

This example was selected as a representative of the general case and
we can use the derived defining function for any configuration involving two
intersecting halfspaces and a partitioning line (plane in 3D). However, for
an arbitrary polygon there can be an important particular case, when the
number of the required R-functions is reduced from four to two. If the
boundary of the halfspace B does not intersect the boundary of C in the area
right to the halfplane A (no intersection of the ray JK with the segments MN
and NO in the above example of Fig. 2), then the polygon can be described
by a simple set-theoretic expression: (A ∪ C) ∩ B. Symmetrically, if the
boundary of the halfspace C does not intersect the boundary of B in the area
of the halfplane A (no intersection of the ray QR with the segments EF and
FG), then the polygon can be described by another expression: (¬A∪B)∩
C. Such special cases with lower number of operations require additional
treatment for detecting and handling.

13

(a) (b)

(c) (d)

Figure 5: Set-theoretic construction of the polygon with a defining function without non-
boundary zero points.

14

3.4. BSP-tree construction and function evaluation

In this section we describe our algorithm for the scalar field generation for
the given polygonal object. The set-theoretic description and the scalar field
generation for a 2D polygon, presented in the previous section, reduce the
problem to operations on two parts of the polygon divided by a partitioning
straight line. If we select only supporting straight lines (continuations of
polygon edges) for partitioning the polygon and apply the described proce-
dure to the both parts of the polygon recursively, finally we can construct
a set-theoretic expression involving only supporting halfplanes. The data
structure corresponding to such a recursive procedure is the binary space
partitioning tree (BSP-tree)) [10]. By definition, a BSP-tree is a data struc-
ture that represents the recursive subdivision of N-dimensional space into
two half-spaces by hyperplanes. Each space partitioning procedure separates
N-dimensional cells that are in the interior and in the exterior of the half-
space. The hyperplane does not have to be explicitly defined, as it can be
obtained from the cells. The method of space partitioning works equally for
closed and non-closed sets and does not depend on topology of the original
set. Examples of the BSP-tree construction can be found in many papers
related to BSP-trees such as [18].

As the BSP-tree algorithm treats the sets of different dimensions identi-
cally, the same procedure can be applied in 2D and 3D spaces with very small
modifications. There are two independent parts in the scalar field generation
based on BSP-trees: a pre-processing step of the BSP-tree construction and
the function evaluation at the given point utilizing the constructed BSP-tree.
In this section we present an algorithm for the construction of the BSP-tree
in the 3D case. The construction of BSP-tree in the 2D case can easily be
done in a similar way.

3.4.1. Basic BSP-tree construction

The construction of the BSP-tree is a recursive procedure that contains
the following main steps:

1. selection of the base polygon according to some criteria;

2. construction of the partitioning hyperplane containing the base poly-
gon;

3. division of the rest of polygons into the ”positive” and ”negative” de-
pending on whether the polygons lie in the interior or the exterior after
partitioning by the hyperplane;

15

4. recursive processing of the ”positive” set and the ”negative” set.

In our approach we use the classic construction procedure of the BSP-
tree that has been formalized in [10]. As BSP is a dimension independent
structure by its nature, the algorithm is given for the case of a 3D input
polyhedron with planar polygons as its boundary faces, but can be directly
applied in 2D with reformulation for polygon edges and partitioning straight
lines. Each partitioning plane contains at least one polygonal face.

The BSP-tree building procedure processes the list of the input polygonal
faces. At the first iteration this list is a list of all faces in the input mesh. We
select a polygon that is the base for a partitioning (cutting) plane passing
through it. The selection criteria for the polygon are discussed in subsection
3.4.3. The rest of the polygons from the input list are classified against the
partitioning plane into two groups depending on which side of the plane they
are residing. We classify the polygon as positive if for any vertex Px from
this polygon the following inequality is satisfied:

(Px − P0) � n ≥ 0,
where P0 is a point on the base plane, n is the normal to the plane, and �

is the symbol of the dot product. If some polygon intersects the partitioning
plane, it is split into two parts, each of which is added to the respective
list. Note that unlike BSP-tree construction for computer graphics purposes
the polygon can not just be added to the both ”positive” and ”negative”
lists without splitting. In our method we obtain the correct tree only if the
polygon that intersects partitioning plane is split. The polygons in ”positive”
and ”negative” lists are processed recursively to create positive and negative
subtrees of the created node.

3.4.2. Function evaluation procedure

The set-theoretic expression and the corresponding functional expression
for a single partitioning plane (straight line in 2D) were given in Section 3.2.
In general, one needs to build a corresponding Constructive Solid Geometry
(CSG) tree for the given polygonal object and then to apply R-functions in
its nodes to evaluate the entire scalar field. In our case, the constructed
BSP-tree helps evaluate the scalar field procedurally without building an
equivalent CSG-tree. The evaluation procedure for the scalar field at the
given point starts from the root of the BSP-tree and applies the following

16

functional expressions at the nodes recursively:

f(x) =















fa, positive and negative subtrees are empty
fa ∧α fb, negative subtree is empty and positive is not
fa ∨α fc, positive subtree is empty and negative is not
((fa ∨α fc) ∧α fb) ∨α (−fa ∧α fc), otherwise

(7)

where for the given node fa is a signed distance to the partitioning plane
of the current node, fb is a defining function for the positive subtree of the
node, and fc is a defining function for the negative subtree.

3.4.3. Optimization of BSP-trees

The selection of the base polygon and the partitioning plane is the crucial
part of the BSP-tree construction. Depending on the criteria for the base
polygon selection we can use different approaches. In our work we use two
approaches: ”naive” selection, where the base polygon is randomly selected
from the polygon list, and ”optimized” selection. In this section we present
our techniques to optimize BSP-tree for our method. Unlike the methods for
BSP-tree optimization for rendering purposes, such as in [18], our motivation
for BSP-tree optimization is reduction of numerical errors while applying the
BSP-tree construction and the function evaluation procedure for the con-
structed tree. Moreover, the split operation for the polygons that intersect
partitioning plane should be applied and each split operation can add nu-
merical errors. Therefore, for the optimization we use the criteria that allow
for obtaining a tree with the following properties:

• Minimal number of polygon splitting operations reducing the total
number of nodes and the number of operations in the function eval-
uation

• Minimal computational errors during the function evaluation and the
BSP-tree construction;

To provide the generation of BSP-trees with these properties, we propose
several optimization criteria. Given the list of the polygons M containing
the list of vertices V , we select the base polygon with the partitioning plane
P , if one of the following conditions is satisfied:

• Ksplit = 0

17

• K(P) = Kdist(P) ∗ Kangle(P) is maximal and Ksplit 6= 0 for each
polygon in M

Here
Ksplit(P) = Nsplit

Kdist(P) = min
v∈V,v/∈P

(distance(v, P))

Kangle(P) = min
m∈M,m/∈P

(angle(nm,n))

where Nsplit is a number of faces that are split by the plane P and n is a
normal to P . The meaning of these criteria is the following: maximization of
Kdist and Kangle allows to avoid appearing of degenerate faces after splitting
of the polygon and minimization of Ksplit allows to minimize the number
of the polygon splitting operations. Another way to minimize the accumula-
tion of computational errors is to replace polygon splitting operation (with
calculations of new vertices) by the evaluation of predicates on the base of
plane equations, however it lies outside the scope of this paper.

Fig. 6 shows examples of BSP-fields generated using an optimized BSP-
tree for a 2D polygon. The shown colour maps correspond to different R-
functions: min/max, R-functions with square roots (Eq. 2), and SARDF
operations (”smooth min/max”) [12]. Note that an exact representation of
the polygon by a signed scalar field is obtained in all cases. The min/max
functions do not provide a satisfactory field as it has areas with vanishing
gradients of the defining function in the domain. The R-functions defined
by Eq. 2 generate a C1-continuous field, but it does not well approximate
the distance function. The SARDF type of R-functions generate a scalar
field, which both is C1-continuous and provides better approximation of
the distance function. On the other hand, min/max operations provide the
highest speed of calculations and SARDF operations are the slowest ones.
Therefore, the choice of R-functions entirely depends on the requirements of
particular applications to the scalar field.

4. Applications

We first discuss the results of our experiments with the basic and opti-
mized BSP-tree construction algorithms. Then, several operations employing
the obtained scalar fields are illustrated.

18

(a) (b)

(c) (d)

(e)

Figure 6: Scalar fields for an optimized BSP-tree built for the given polygon (a) with
applied min/max functions (b), R-functions (c), and SARDF operations (d); (e) Colour
distribution. 19

Non-optimized Optimized
Model Vertices Faces Planes Splittings Set Splittings Set

operations operations
Table 64 124 59 56 113 0 68
Block 72 144 20 118 80 0 31

with hole
Dolphin 282 562 562 1503 3249 572 1775

Rocker arm 470 940 933 3253 6221 976 2828
(low poly)

Chain 768 1536 384 2961 3656 1219 2260

Table 1: Tests of the BSP-tree optimization

Non-optimized Optimized
Model Polygons BSP create query BSP create query
Table 124 ∼ 0 ∼ 0 ∼ 0 ∼ 0
Block 144 ∼ 0 ∼ 0 ∼ 0 ∼ 0

with hole
Dolphin 562 0.441 0.16 3.385 0.1

Rocker arm 940 0.411 0.33 23.273 0.16
(low poly)

Chain 1536 0.531 0.18 20.74 0.12
Fauset 2143 1.933 0.691 73.977 0.3

Triceratops 5660 3.835 0.962 297.027 0.621
Fandisk 12946 35.091 1.022 1265.05 0.421

Rocker arm 20088 58.825 8.982 19267.4 2.884
(high poly)

Buddha 35800 183.263 14.13 14744.8 8.211
Turtle 102998 269.858 18.436 n/a n/a

Table 2: Timing of the BSP-tree optimization. ”BSP create” denotes time (in seconds)
to construct BSP-tree, ”query” denotes the function evaluation time for 1000 queries (in
seconds) at random points for the constructed field. Timings are absent for the optimized
BSP-tree for the last model due to very long time for the creation of the tree.

20

(a) (b)

Figure 7: Table model

(a) (b)

Figure 8: Block with hole model

21

(a) (b)

Figure 9: Chain model

(a) (b)

Figure 10: Rocker arm model

22

4.1. Exact conversion of polygonal objects with sharp features and arbitrary
topology

We did not make any assumption about objects geometry features or their
topology in the formulations of the BSP-tree generation and the function
evaluation algorithms. Here we show how our method can be applied to
objects that usually cannot easily be converted using existing methods. Figs.
7 and 8 illustrate the conversion of polygonal models with sharp features.
These figures include the original mesh and a colour map of a cross-section of
the functionally represented model that we obtain from the initial model. The
colour distribution for each model is set up only to illustrate the behaviour of
the defining function, not to compare models with each other. For example,
for the ”Block with hole” model, which has quite a small number of polygons,
the approximation methods based on RBF and MPU [31][40][19] can only
produce some oval shapes for the block and for the hole, which is unacceptable
in most applications. Figures 8, 9 and 10 illustrate the conversion of
polygonal models with non-zero genus and objects with disjoint components.

The main feature of the monotone formula for a 2D polygon is the minimal
number (N-1) of set-theoretic operations on N supporting halfspaces of the
polygon. The main purpose of the BSP-tree optimization described above is
to minimize the number of nodes in the BSP-tree and thus the total number
of set-theoretic operations.

Table 1 shows the results of testing the optimization. Here the number
of planes means the number of unique supporting halfspaces with planar
boundaries (several mesh triangles can belong to one plane). The main result
is that we can achieve the drastic reduction of the number of polygon splitting
operations. In the case of low number of polygons the optimization leads to
the elimination of splitting and to the number of set-theoretic operations
very close to the number of planes (see ”Block with hole” and ”Table”). For
more complex models the number of set-theoretic operations remains about
three times larger than the number of planes. Further research is necessary
to achieve the minimal number provided by the monotone formula in 2D.
Timings for optimized and non-optimized trees are shown in Table 2. Several
models were selected with different number of polygons yet not all of them are
illustrated by figures. In our implementation, the construction of optimized
BSP-trees for large meshes can be relatively slow (for models with more than
100000 polygons it becomes impractical), however, processing time for the
point query for optimized trees is significantly lower. It can be seen that the
optimization can decrease the function evaluation time up to the factor of

23

(a) (b)

Figure 11: A model with missing polygons and a zero-isosurface of the constructed BSP-
field.

three. Also, one can see that the speed of the BSP-tree construction and
optimization does not depend directly on the number of faces, and it can
take more time to construct the tree for the mesh with a lower number of
polygons than for the mesh with a larger number of polygons.

4.2. Conversion of incomplete meshes

As mentioned above, the input meshes should be closed manifolds. How-
ever, if the mesh is not a closed manifold, the BSP field can be created from
the input mesh and in many cases represents the model that is topologically
and geometrically close to the original model. In Fig. 11 we show how our
method can be applied to a model with missing polygons. From the orig-
inal mesh (see Fig. 11a) we removed several triangles (red colour in the
figure) and created a BSP field from the rest of triangles (green colour). The
resulting functionally represented model (see Fig. 11b) is visually close to
the original, however some artefacts did appear, because we can not guar-
antee the recovery of the unknown boundary of the surface. In general, this
conversion is applicable to incomplete meshes with cracks and other small
defects.

4.3. Offsetting and blending of polygonal meshes

Offsetting operation in solid modelling creates a contracted or expanded
version of the given solid. In the case of the function-based model, we can
implement a simple type of an offset operation with the following modification
of the defining function: F (x, y, z) − d ≥ 0, where d is an offset value.
In general, offsetting operation applied to BSP-fields does not guarantee
constant distance offset. For example, for the Chain model (see Fig. 9)

24

(a) (b)

Figure 12: Offsetting of the Chain model by changing the function value for the isosurface

(a) (b)

Figure 13: Blending union with added material between two polygonal models: a) Initial
two polygonal objects, b) Blending union

25

(a) (b)

Figure 14: Phases of motion of the functionally represented polygonal rocker arm along a
helical trajectory (a), and the solid sweep (b).

we show negative offset in Fig. 12a and positive offset in Fig. 12b. It
can be seen that the defining function has distance properties outside the
object, however there is no distance property inside the object that results in
artefacts of the negative offset. This can be the basis for the future research.
If the distance property is provided, we can also apply a blending operation
to two converted polygonal objects. Fig. 13 shows a bounded blending union
operation [22] with added material between two polygonal objects converted
to scalar fields: a cross made of H-channel beams (see Fig. 13a, light colour)
and a cross made of square beams (see Fig. 13a, dark colour).

4.4. Sweeping

Sweeping by a moving solid is one of the most important operations in
CAD. It can be applied in simulation of numerically controlled machining,
robot motion planning, and maintainability simulation. In general, the op-
eration is problematic for solids with complex topology, shape varying sweep
generators, and sweeps with self intersections. We have applied the algorithm
for sweeping by a moving solid [30] devised for function-based solid models.
Its advantage is the generality of the approach resolving the above difficulties.
Fig. 14 shows a sweep by a mechanical part with non-zero genus moving
along a helical trajectory. The initial polygonal model was converted to a
scalar field model, and the algorithm [30] was applied to obtain the scalar
field defining the final sweep. Note that the artefacts in the sweep surface
were caused by the given numerical threshold for the algorithm.

26

(a) (b)

(c)

Figure 15: Replicating of the converted polygonal model inside a cubic volume with three
different values of lattice density (required memory and rendering time are the same for
all three lattices).

27

(a) (b)

Figure 16: a) A polygonal bone model, green colour denotes the extracted segment of
interest; (b) Cut-away section of the the segment of interest showing the generated porous
microstructure.

28

4.5. Modeling microstructures

Recent developments in heterogeneous objects modeling include internal
structures of objects with size of details orders of magnitude smaller than
the overall size of the object. The use of scalar fields allows for procedural
modeling of microstructures such as lattices and porous media in a compact,
precise and arbitrarily parametrized way [21].

Lattices are spatial structures consisting of some initial model periodically
replicated inside the given volume. In Fig. 15 we take the initial model, the
blending union between two polygonal objects (see Fig. 13b), and replicate it
using a periodic space mapping. In this example we use a box as a bounding
volume for microstructures, however other bounding volumes can be applied.
Note that the rendering time (we use ray-casting here) is almost the same
for these three lattices as we use the same function with different parameter
values for the lattice density.

Modeling porous media, for example, bone microstructures, can be done
in a similar way. The representation of the bone geometry by a scalar field
helps to create procedural function-based models of regular and pseudo-
random pores distribution inside the bone volume (see Fig. 16). In this
example we extracted the segment of interest from the initial mesh and cre-
ated the porous structure for this segment. Note that the pore sizes decrease
close to the bone surface. This is provided by the porous microstructure
generation procedure based on the generated scalar field for the polygonal
geometry of the bone segment. The parameterized model of pores distri-
bution can be applied to study the development of bone diseases such as
osteoporosis.

5. Conclusions

We proposed, implemented and tested a new dimension independent algo-
rithm for the conversion of a polygonal object to a representation by a signed
scalar field without vanishing gradients and extra zero-value isosurfaces. The
algorithm provides an exact representation of polygonal objects including
those with small number of vertices (less than a hundred for instance), sharp
features, missing polygons, non-zero genus, and several disjoint components.
Under exact representation we mean the theoretical model without taking
into account the finite precision of computing scalar field values.

The existing problems of input polygonal meshes such as self-intersections,
topological inconsistencies, large number of holes, and triangles with very

29

high aspect ratios influence the quality of the obtained results. A robust
conversion procedure requires special mesh pre-processing to provide an in-
put mesh as a closed manifold. The function evaluation procedure is time
consuming. For some applications it can be reasonable to switch to continu-
ous approximations of the obtained scalar fields using B-splines or wavelets.
However, it would mean loosing the exact representation of the initial polyg-
onal object.

The proposed algorithm generates a well-formed set-theoretic represen-
tation for a polygonal object (see [27]), which is in some aspects superior
in comparison with the the monotone set-theoretic formula available for 2D
polygons. For example, the monotone formula is not directly applicable to
objects with non-zero genus and with disjoint components. The ultimate
goal of this research is to achieve for 3D polyhedra the property of the mini-
mal number of operations of the monotone formula. Although the proposed
optimizations of the basic algorithm have significantly reduced the number
of operations, the monotone formula property has been achieved only for rel-
atively simple objects with a low number of polygons. Further research will
be needed in the direction of monotone formula construction for 3D case, for
example, on the detection of the special cases when the number of required
R-functions is reduced from four to two as described in 3.3.

It is obvious that polygonal splitting and calculation of new triangle ver-
tices lead to numerical error accumulation. This can be avoided by switching
to pure predicate evaluation based on initial plane equations as discussed in
[34][2]. This is another area of our future research.

Acknowledgements

The polygonal models are from the INRIA Gamma team research database
and the shape repository of the AIM@SHAPE project.

References

[1] Allegre R., Galin E., Chaine R., Akkouche S.: The Hybrid
Tree: Mixing skeletal implicit surfaces, triangle meshes, and point sets
in a free-form modeling system. Graphical Models 68, 1 (January 2006),
42–64.

[2] Bernstein G., Fussell D.: Fast, Exact, Linear Booleans. Computer
Graphics Forum 28, 5 (2009), 1269–1278.

30

[3] Beynon W. M.: Combinatorial aspects of piecewise-linear maps. Jour-
nal of the London Mathematical Society 2, 7 (1974), 719–727.

[4] Biswas A., Shapiro V.: Approximate distance fields with non-
vanishing gradients. Graph. Models 66, 3 (2004), 133–159.

[5] Biswas A., Shapiro V., Tsukanov I.: Heterogeneous material mod-
eling with distance fields. Comput. Aided Geom. Des. 21, 3 (2004),
215–242.

[6] Bloomental J. et al: Introduction to Implicit Surfaces. Morgan
Kaufmann Publishers Inc. (1997)

[7] Buchele S. F., Crawford R. H.: Three-dimensional halfspace con-
structive solid geometry tree construction from implicit boundary rep-
resentations. In SM ’03: Proceedings of the eighth ACM Symposium on
Solid Modeling and applications (2003), ACM, pp. 135–144.

[8] Cohen-Or D., Solomovic A., Levin D.: Three-dimensional dis-
tance field metamorphosis. ACM Trans. Graph. 17, 2 (1998), 116–141.

[9] Dobkin D., Guibas L., Hershberger J., Snoeyink J.: An effi-
cient algorithm for finding the csg representation of a simple polygon.
SIGGRAPH Comput. Graph. 22, 4 (1988), 31–40.

[10] Fuchs H., Kedem Z. M., Naylor B. F.: On visible surface genera-
tion by a priori tree structures. In SIGGRAPH ’80: Proceedings of the
7th annual conference on Computer graphics and interactive techniques
(1980), ACM, pp. 124–133.

[11] Frisken S. F., Perry R. N., Rockwood A. P., Jones T. R.:
Adaptively sampled distance fields: a general representation of shape
for computer graphics. In SIGGRAPH ’00: Proceedings of the 27th an-
nual conference on Computer graphics and interactive techniques (2000),
pp. 249–254.

[12] Fayolle P.-A., Pasko A., Schmitt B., Mirenkov N.: Construc-
tive heterogeneous object modeling using signed approximate real dis-
tance functions. Journal of Computing and Information Science in En-
gineering, ASME Transactions 6, 3 (2006), 221–229.

31

[13] Heterogeneous Objects Modelling and Applications Lecture Notes in
Computer Science, vol. 4889, Eds. Pasko A., Adzhiev V., Comninos P.,
Springer, (2008), 285 p.

[14] Ju T.: Robust repair of polygonal models. ACM Trans. Graph. 23, 3
(2004), 888–895.

[15] Kim Y. S., Wilde D. J.: A convex decomposition using convex hulls
and local cause of its non-convergence. ASME Journal of Mechanical
Design 114, 3 (Sept. 1992), 459–467.

[16] Muraki S.: Volumetric shape description of range data using “blobby
model”. In SIGGRAPH ’91: Proceedings of the 18th annual conference
on Computer graphics and interactive techniques (1991), ACM, 227–235.

[17] Morse B. S., Yoo T. S., Rheingans P., Chen D. T., Subrama-

nian K. R.: Interpolating implicit surfaces from scattered surface data
using compactly supported radial basis functions. In SIGGRAPH ’05:
ACM SIGGRAPH 2005 Courses (2005), ACM, p. 78.

[18] Naylor B.F.: Constructing Good Partitioning Trees. Proc. Graphics
Interface ’93, (1993), 181–191.

[19] Ohtake Y., Belyaev A., Alexa M., Turk G., Seidel H.-P.:
Multi-level partition of unity implicits. ACM Trans. Graph. 22, 3 (2003),
463–470.

[20] Pasko A., Adzhiev V., Sourin A., Savchenko V.: Function rep-
resentation in geometric modeling: concepts, implementation and appli-
cations.Vis. Comp. 11, 8 (1995), 429–446.

[21] Pasko A., Vilbrandt T., Fryazinov O., Adzhiev V.: Procedural
Function-based Spatial Microstructures Technical Report TR-NCCA-
2009-02, ISBN 1-85899-123-4, The National Centre for Computer Ani-
mation, Bournemouth University, UK (2009), 15 p.

[22] Pasko G., Pasko A., Kunii T.: Bounded blending for function-based
shape modeling. IEEE Comput. Graph. Appl. 25, 2 (2005), 36–45.

[23] Peterson D.: Halfspace representation of extrusions, solids of revo-
lution, and pyramids. Tech. rep., Sandia National Laboratories, Albu-
querque, NM, (1984).

32

[24] Payne B. A., Toga A. W.: Distance field manipulation of surface
models. IEEE Comput. Graph. Appl. 12, 1 (1992), 65–71.

[25] Peter J., Tornai M., Jaszczak R.: Analytical versus voxelized
phantom representation for monte carlo simulation in radiological imag-
ing. Medical Imaging, IEEE 19, 5 (2000), 556–564.

[26] Rvachev V.: Methods of the algebra of logic in mathematical physics.
Ukrainian Mathematical Journal 27, 4 (1974), 472–474.

[27] Shapiro V.: Well-Formed Set Representations of Solids. International
Journal of Computational Geometry and Applications 9, 2 (1999), 125–
150.

[28] Shapiro V.: Semi-analytic geometry with R-functions. Acta Numerica
16 (2007), 239–303.

[29] Shen C., O’Brien J. F., Shewchuk J. R.: Interpolating and ap-
proximating implicit surfaces from polygon soup. In SIGGRAPH ’04:
ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004), ACM,
pp. 896–904.

[30] Sourin A., Pasko A.: Function representation for sweeping by a mov-
ing solid. IEEE Transactions on Visualization and Computer Graphics
2, 1 (1996), 11–18.

[31] Savchenko V. V., Pasko E. A., Okunev O. G., Kunii T. L.:
Function representation of solids reconstructed from scattered surface
points and contours. Computer Graphics Forum 14, 4 (1995), 181–188.

[32] Shapiro V.: Real functions for representation of rigid solids.
Computer-Aided Geometric Design 11, 2 (1994), 153–175.

[33] Shapiro V., Vossler D. L.: Separation for boundary to CSG con-
version. ACM Trans. Graph. 12, 1 (1993), 35–55.

[34] Sugihara, K., Iri, M.: A solid modelling system free from topological
inconsistency. J. Inf. Process. 12, 4 (1989), 380–393.

[35] Tor S. B., Middleditch A. E.: Convex decomposition of simple
polygons. ACM Trans. Graph. 3, 4 (1984), 244–265.

33

[36] Wu J., Kobbelt L.: Piecewise linear approximation of signed distance
fields. In Proceedings of Vision, modeling and Visualization 03 (2003),
pp. 513–520.

[37] Woodwark J. R., Wallis A. F.: Graphical input to a Boolean solid
modeller. In Proc. CAD’82, (1982), 681–688.

[38] Tang K., Woo T.: Algorithmic aspects of alternating sum of volumes
part 1: data structure and difference operation. In Computer-Aided
Design 23, 5 (1991), 357–366.

[39] Tang K., Woo T.: Algorithmic aspects of alternating sum of volumes.
Part 2: Nonvergence and its remedy. In Computer-Aided Design 23, 6
(1991), 435–443.

[40] Yngve G., Turk G.: Robust creation of implicit surfaces from polyg-
onal meshes. IEEE Transactions on Visualization and Computer Graph-
ics 8, 4 (2002), 346–359.

[41] Zhao H., Osher S.: Visualization, analysis and shape reconstruction
of unorganized data sets. In Geometric Level Set Methods in Imaging,
Vision and Graphics, Springer, (2002), 681–688.

34

