
i

i

i

i

i

i

i

i

Polygonal-Functional Hybrids
for Computer Animation and

Games
D. Kravtsov, O. Fryazinov, V. Adzhiev, A.

Pasko, P. Comninos

1.1 Introduction

The modern world of computer graphics is mostly dominated by polyg-
onal models. Due to their scalability and ease of rendering such models
have various applications in a wide range of fields. Unfortunately some
shape modelling and animation problems can hardly be overcome using
polygonal models alone. For example, dramatic changes of the shape (in-
volving changes of topology) or metamorphosis between different shapes
can not be performed easily. On the other hand Function Representa-
tion (FRep) [Pasko et al. 95] allows us to overcome some of the problems
and simplify the process of the major model modification. We propose to
use a hybrid model, where we combine together both polygonal and FRep
models. Hence we can take advantages of different model representations
performing model evaluation entirely on the GPU. Our approach allows us
to:

• produce animations involving dramatic changes of the shape (e.g.
metamorphosis, viscoelastic behaviour, character modifications etc)
in short times (Fig. 1.1a)

• interactively create complex shapes with changing topology (Fig.
1.1b) and specified LOD (Fig. 1.2)

• integrate existing animated polygonal models and FRep models within
a single model

1

i

i

i

i

i

i

i

i

2 1. Polygonal-Functional Hybrids for Computer Animation and Games

(a) (b)

Figure 1.1. (a) Mimicked viscoelastic behaviour and hybrid characters (Model
“Andy” is courtesy of John Doublestein) (b) Iterations of character growth con-
trolled by the user

Figure 1.2. Variation of polygonization resolution

1.2 Background

1.2.1 Implicit Surfaces and Function Representation (FRep)

FRep [Pasko et al. 95] incorporates implicit surfaces and more generic types
of procedural objects. Any point in space can be classified to find out if it
belongs to FRep object. FRep object can be defined by a scalar function
and an inequality:

f(p) : R3 → R

f(p) > T,p is inside the object
f(p) = T,p is on the object’s boundary
f(p) < T,p is outside the object

(1.1)

where p is an arbitrary point in 3D space and T is a threshold value (or
isovalue). The subset {p ∈ R3 : f(p) ≥ T} is called a solid object and the

i

i

i

i

i

i

i

i

1.2. Background 3

subset {p ∈ R3 : f(p) = T} is called an iso-surface (see fig. 1.3). Function
f(p) can be a signed distance field or an arbitrary scalar field.

(a) (b) (c)

Figure 1.3. Scalar field (defining function): (a) The sign of a scalar field (b) The
extracted implicit surface (T=0) (c) Different iso-surfaces for different values of
T

The first derivative of the function can be used to compute the gradient
and the normal on the object’s surface:

∇f(p) = (
∂f(p)

∂x
,
∂f(p)

∂y
,
∂f(p)

∂z
);∇f,p ∈ R3 (1.2)

~n(p) = − ∇f(p)
‖∇f(p)‖ ;~n(p),p ∈ R3 (1.3)

Unfortunately, only a small subset of these models is well-known to
a wider audience. One of the most popular types of implicit surfaces
are blobs [Blinn 82] (also known as metaballs or soft objects). Individ-
ual blobby objects defined by positions of their centers and radii can be
smoothly blended with each other. Superposition of these simple primi-
tives provides an opportunity to build more complex shapes with changing
topology, which is usually hard to achieve with purely polygonal models.

Implicit objects are also known for easy definition of metamorphosis se-
quences (also known as morphing). One only needs to interpolate between
values of two signed distance fields to retrieve an intermediate object (fig.
1.4):

f(p, t) = fα(t) · f1(p) + fβ(t) · f2(p);p ∈ R3, t ∈ R

where fα(t) and fβ(t) are continuous scalar functions. Parameter t is usu-
ally defined on the [0; 1] interval and interpolating functions fα(t), fβ(t)

i

i

i

i

i

i

i

i

4 1. Polygonal-Functional Hybrids for Computer Animation and Games

are chosen to satisfy following constraints:

f(p, 0) = f1(p); f(p, 1) = f2(p)

Figure 1.4. Metamorphosis sequence

Another known advantage of implicit surfaces is an easy implementation
of Constructive Solid Geometry (CSG) operations [Ricci 73]. Arbitrary
objects can be combined together to produce shapes of high complexity.
R-functions-based CSG operations preserving C1−continuity were applied
in FReps [Pasko et al. 95]:

S1 ∪ S2 = f1(p) + f2(p) +
√

f2
1 (p) + f2

2 (p)

S1 ∩ S2 = f1(p) + f2(p)−
√

f2
1 (p) + f2

2 (p)

Preserving C1-continuity of the resulting function may be especially im-
portant to overcome rendering artifacts- when estimating gradient of the
scalar field produced by the object. Another important operation avail-
able in FRep is blending union. This operation allows to perform smooth
blending between two objects controlling the shape of the resulting object:

fb(f1, f2) = f1 + f2 +
√

f2
1 + f2

2 +
a0

1 +
(

f1

a1

)2

+
(

f2

a2

)2

where a1 controls the contribution of the first object, a2 controls the con-
tribution of the second object and a0 controls the overall “shift” from the
resulting object. Blending set-theoretic operations allow us to dramati-
cally change the resulting shape controlling the influence of each of the
initial shapes being blended, as well as controlling the overall offset from
the resulting shape (see fig. 1.5).

This is a small subset of FRep features that we will use to show a
number of interesting applications later.

1.2.2 Convolution surfaces

Aforementioned metaballs can be considered a subset of so called convolu-
tion surfaces [Bloomenthal and Shoemake 91]. These surfaces are defined
by a lower-dimensional skeleton and a function defining surface profile:

i

i

i

i

i

i

i

i

1.2. Background 5

(a) (b) (c) (d)

Figure 1.5. Changing blending parameters

f(p) =
∫

R3

g(r)h(p− r)dr = g ⊗ h

where g(r) defines the geometry of the primitive (i.e. the skeleton function),
h(p) is a kernel function (similar to various potential functions used for
metaballs). g(r) equals to “1”, if point r belongs to the skeleton and
equals to “0” everywhere else. Resulting convolution surface f(p) = T also
depends on the threshold value T .

(a) (b)

Figure 1.6. Convolutions surfaces: (a) underlying skeleton (b) produced convo-
lution surface

Convolution surfaces exhibit an important superposition property:

(g1 + g2)⊗ h = (g1 ⊗ h) + (g2 ⊗ h) (1.4)

This means that the field produced by two independent skeletons is the
same as the field produced by the combination of these skeletons. I.e. fields
produced by different skeletal elements blend together resulting in a smooth
surface. Convolution surfaces can be defined by points, line segments, arcs
and triangles. Analytical solutions were obtained for a number of kernel
functions [McCormack and Sherstyuk 98]. We will refer to Cauchy kernel:

i

i

i

i

i

i

i

i

6 1. Polygonal-Functional Hybrids for Computer Animation and Games

h(d) =
1

(1 + s2d2)2
; d > 0 (1.5)

where d specifies the Euclidean distance from a point of interest in space
and s is a scalar value controlling the radius of the convolution surface. Let
us write an equation for a convolution surface produced by a line segment.
Given a line segment

r(t) = b + ta; 0 ≤ t ≤ l

where b is the segment base (position vector), a is the segment axis (di-
rection vector) and l is the segment length. For an arbitrary point p ∈ R3

the squared distance between r(t) and p is then defined as:

d2(t) = |p− b|2 + t2 − 2t((p− b) · a)

A field function for an arbitrary point p is then defined as:

f(p) =

l∫

0

dt

(1 + s2d2(t))2
=

=
x

2m2 (m2 + s2x2)
+

l − x

2m2n2
+

1
2sm3

(
arctan

[sx

m

]
+ arctan

[
s(l − x)

m

])

where x is the coordinate on the segment’s axis,

x = (p− b) · a
m2 = 1 + s2(q2 − x2)

n2 = 1 + s2(q2 + l2 − 2lx)

According to equation 1.4 the field produced by N line segments is
defined as follows

F (p) =
N∑

i=1

fi(p)

where fi(p) is the field produced by the i-th line segment. An improved
version of Cauchy kernel can be used to vary the radius along the line
segment [Jin et al. 01].

A few other kernels can be used as well. But polynomial kernels re-
quire windowing (i.e. limiting function values within particular intervals),
resulting in less smooth convolution surfaces. Besides, evaluation proce-
dure requires more branching instructions, which is often undesirable when
performing computations on the GPU. Some other kernels with infinite
support are either more computationally expensive or provide less control
over the resulting shape. In this article we will only refer to convolution
surfaces produced by the line segments using Cauchy kernel.

i

i

i

i

i

i

i

i

1.3. Working with FRep models using GPU 7

1.2.3 Rendering FRep models

Even though FReps have a lot of advantages, visualizing them is not as
straightforward as visualizing polygonal models. It is often desirable to
convert FRep object to a polygonal mesh for efficient rendering. One of the
well-known methods used for the extraction of isosurfaces from a scalar field
is called Marching Cubes [Lorensen and Cline 87]. There are a number of
other methods solving the same problem, but Marching Cubes is still pop-
ular due to its high speed and ease of implementation. Texturing of isosur-
faces requires additional attention as well. Traditional UV-unwrapping is
not suitable for complex dynamic models. Known parameterization meth-
ods can be applied to calculate UV coordinates of the extracted surface
in real-time (for instance, spherical or cubic projection often used for ren-
dering of liquid substances). Triplanar texturing [Geiss 07] provides a bet-
ter way of texturing of complex functional objects. Another option could
be the usage of procedural solid textures implemented in a shader [Ebert
et al. 02]. Though pure procedural textures are not always well suited for
rendering of arbitrary objects.

(a) (b) (c)

Figure 1.7. Texturing: (a) cubemap (b) procedural shader (c) triplanar texturing

1.3 Working with FRep models using GPU

Modern GPUs allow to perform evaluation and rendering of certain types
of FRep models entirely on the GPU in real-time. Three main steps need
to be performed:

1. Sample distance function values in the volume and save the results
to a temporary buffer

2. Extract isosurface and its normals from discretized data set

i

i

i

i

i

i

i

i

8 1. Polygonal-Functional Hybrids for Computer Animation and Games

3. Render extracted isosurface

Sampling of distance functions can be performed in a vertex shader
[Uralsky 06] or a fragment shader. In the latter case, the volume can be
sliced with a set of 2D planes or directly rendered to a volume texture.
Isosurface extraction from discretized data set can be performed with the
help of geometry shaders [Geiss 07,Tatarchuk et al. 07]. All of the above
steps can be performed on any DirectX 10 compatible hardware. The code
accompanying this article is based on NVIDIA CUDA SDK [NVIDIA 09],
which allows performing generic computations on the GPU without the
necessity to overcome limitations of the existing graphics APIs. Moreover,
CUDA SDK already includes an illustrative example of Marching Cubes
running on the GPU. We used this code as a starting point for the imple-
mentation of our approach running on the GPU.

In the following sections we will describe each of the aforementioned
steps in detail.

1.3.1 Function evaluation

First of all, model parameters need to be updated and uploaded to the
GPU. These parameters are stored in the constant memory and need to be
modified before model evaluation. cudaMemcpyToSymbol function can be
used for this purpose:

// parameters o f the segments d e f i n i n g convo lut ion su r f a c e
c o n s t a n t

CONVOLUTION SEGMENT segmentsOnDevice [segmentsNumMax] ;
// other parameters o f the model
. . .
// copy segments from CPU to constant GPU memory
cudaMemcpyToSymbol (segmentsOnDevice , segmentsOnHost ,

s i z e o f (CONVOLUTION SEGMENT)) ;
// copy other parameters :
. . .

The volume where the defining function will be evaluated needs to be
defined. This volume is uniformly divided in a number of cells according
to required resolution. Values of the function at the corners of each cell are
evaluated in parallel threads, one thread per value.

We need to save the sampled function values to a temporary buffer
in order to avoid function re-evaluations in the future. Writing to global
memory is a relatively slow operation and should only be performed if
computationally expensive functions are evaluated. Otherwise, the time
required to save and load the results may appear to be significantly higher
than the time needed for function evaluation (see section 1.3.2). Depending
on the computational complexity of the function being evaluated it may

i

i

i

i

i

i

i

i

1.3. Working with FRep models using GPU 9

be beneficial to perform more than one evaluation in a kernel and store
temporary results in a shared memory. After that temporary results need
to be copied from shared memory to global memory in one instruction,
thus achieving coalescing.

In many circumstances high-precision function evaluation is not re-
quired and faster math intrinsics available in CUDA can be used. They
can either be called directly or automatically enabled via use fast math
CUDA compiler option (refer to CUDA documentation for more details on
the topic).

1.3.2 Isosurface extraction

We have already mentioned that Marching Cubes (MC) algorithm is com-
monly used to extract an isosurface from the scalar field. The MC algorithm
works with individual cells uniformly distributed in the volume. The size
and the number of the cells is determined by the required quality of the
resulting isosurface. The algorithm allows us to find a set of polygons rep-
resenting surface patch of the functional object enclosed in each individual
cell. Each cell is handled by an independent thread. Here are a number of
steps required to efficiently extract an isosurface on the GPU:

1. For each cell

(a) write out the number of vertices it contains

(b) write out the flag indicating whether it contains any geometry

2. Find the number of non-empty cells

3. Create a group of all non-empty cells using the flags information from
step 1b

4. Generate the table of vertex buffer offsets for non-empty cells

5. For each non-empty cell

(a) Find the number of vertices it outputs

(b) Generate vertices of the triangles being output from the cell

(c) Generate normal for each vertex being output

(d) Save vertices and normals using offset generated at step 4

This may look complicated at first, because a number of additional
issues arise when performing polygonization on parallel computing device.
First of all, we want to find a set of cells that actually contain geometry
in them. Usually the majority of the cells do not contain any geometry, as

i

i

i

i

i

i

i

i

10 1. Polygonal-Functional Hybrids for Computer Animation and Games

they are situated completely inside or outside the object, thus having no
intersections with the surface of the object. It is important to discard such
cells early in order to avoid redundant computations (step 3). Secondly,
each non-empty cell outputs from 1 to 5 triangles. For each cell we need
to know the offset in the vertex buffer where the vertices will be output.
But this offset depends on the number of vertices output from preceding
cells. In case of sequential MC this offset can be iteratively increased, while
processing each cell one after another. But it gets more complicated when
the cells are processed in parallel. This problem is solved at step 4 using
CUDA Data Parallel Primitives Library [Sengupta et al. 08].

Step 1 MC case index needs to be determined, in order to find out whether
a cell is empty or not. To do so, we need to retrieve function values at eight
corners of each cell and determine its MC case index. At this point we use
the data sampled before (see section 1.3.1):

// Based on o r i g i n a l source code prov ided by NVIDIA Corporation

// ge t MC case index depending on func t ion va lue s
d e v i c e u int getMCIndex (const f loat ∗ f i e l d , f loat th r e sho ld)

{
uint indexMC ;
indexMC = uint (f i e l d [0] < th r e sho ld) ;
indexMC |= uint (f i e l d [1] < th r e sho ld) << 1 ;
indexMC |= uint (f i e l d [2] < th r e sho ld) << 2 ;
indexMC |= uint (f i e l d [3] < th r e sho ld) << 3 ;
indexMC |= uint (f i e l d [4] < th r e sho ld) << 4 ;
indexMC |= uint (f i e l d [5] < th r e sho ld) << 5 ;
indexMC |= uint (f i e l d [6] < th r e sho ld) << 6 ;
indexMC |= uint (f i e l d [7] < th r e sho ld) << 7 ;

return cubeindex ;
}

// sample volume data s e t at the s p e c i f i e d po in t
d e v i c e f loat sampleVolume (u int3 point , u int3 g r i dS i z e)

{
p . x = min (po int . x , g r i dS i z e . x − 1) ;
p . y = min (po int . y , g r i dS i z e . y − 1) ;
p . z = min (po int . z , g r i dS i z e . z − 1) ;
u int i = (po int . z ∗ g r i dS i z e . x ∗ g r i dS i z e . y) +

(po int . y ∗ g r i dS i z e . x) + point . x ;
return tex1Dfetch (volumeTex , i) ;

}

// output number o f v e r t i c e s t ha t need to be generated fo r
// current c e l l and output f l a g i n d i c a t i n g whether current
// c e l l conta ins any t r i a n g l e s at a l l

g l o b a l void
p r ep r o c e s sCe l l (. . .)
{

i

i

i

i

i

i

i

i

1.3. Working with FRep models using GPU 11

. . .
f loat f i e l d [8] ;

// r e t r i e v e func t i on va lue s at 8 corners o f a cube
f i e l d [0]= sampleVolume (gridPos , g r i dS i z e) ;
f i e l d [1]= sampleVolume (gr idPos + make uint3 (1 , 0 , 0) , g r i dS i z e) ;
f i e l d [2]= sampleVolume (gr idPos + make uint3 (1 , 1 , 0) , g r i dS i z e) ;
f i e l d [3]= sampleVolume (gr idPos + make uint3 (0 , 1 , 0) , g r i dS i z e) ;
f i e l d [4]= sampleVolume (gr idPos + make uint3 (0 , 0 , 1) , g r i dS i z e) ;
f i e l d [5]= sampleVolume (gr idPos + make uint3 (1 , 0 , 1) , g r i dS i z e) ;
f i e l d [6]= sampleVolume (gr idPos + make uint3 (1 , 1 , 1) , g r i dS i z e) ;
f i e l d [7]= sampleVolume (gr idPos + make uint3 (0 , 1 , 1) , g r i dS i z e) ;

// f ind out case index in the MC t a b l e
uint indexMC = getMCIndex (f i e l d , th r e sho ld) ;

// read number o f v e r t i c e s produced by t h i s case
uint numVerts = tex1Dfetch (numVertsTex , indexMC) ;

i f (c e l l I n d e x < numCells) {
// save the number o f v e r t i c e s f o r l a t e r usage
c e l lV e r t s [c e l l I n d e x] = numVerts ;
// f l a g i n d i c a t i n g whether t h i s c e l l ou tput s any t r i a n g l e s
cellsNonEmpty [c e l l I n d e x] = (numVerts > 0) ;

}
}

where numVertsTex is a table containing the number of triangle vertices
contained in a cell corresponding to certian MC case and volumeTex is the
sampled volume data that was earlier bound to a 1D texture:

struct cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (32 ,0 ,0 ,0 , cudaChannelFormatKindFloat) ;

cudaBindTexture (0 , volumeTex , d volume , channelDesc) ;

It is preferable to fetch data from textures rather than from global device
memory as in this case texture cache can be utilized to reduce memory
access times.

Step 2 Once output vertex information for each cell has been retrieved,
scan algorithm (also known as “Parallel Prefix Sum”) can be used. This
operation allows to generate an array, in which each element contains the
sum of all preceding values of the input array (see fig. 1.8) [Sengupta
et al. 07].

In our case input array d cellsNonEmpty contains either “0” (empty
cell) or “1” (non-empty cell). Hence each element of the array generated by
an exclusive scan operation (d cellsNonEmptyScan) applied to the input
array contains the number of non-empty cells preceding it. The values of
such elements can be interpreted as sequential indices of non-empty cell.

i

i

i

i

i

i

i

i

12 1. Polygonal-Functional Hybrids for Computer Animation and Games

Figure 1.8. Exclusive scan

The last element of the generated array equals to the total number of all
non-empty cells except the last one:

// scan array o f non−empty c e l l s
cudppScan (scanPlanExclus ive , d cellsNonEmptyScan ,

d cellsNonEmpty , numCells) ;
// copy the va lue o f the l a s t e lement from the GPU
uint nonEmptyCellNumber , la s tCe l l I sEmpty ;
cudaMemcpy ((void ∗) &nonEmptyCellNumber ,

(void ∗) (d cellsNonEmptyScan + numCells − 1) ,
s izeof (u int) , cudaMemcpyDeviceToHost) ;

// add the va lue from the l a s t c e l l as i t may be non−empty too
cudaMemcpy ((void ∗) &lastCel l I sEmpty ,

(void ∗) (d cellsNonEmpty + numCells − 1) ,
s izeof (u int) , cudaMemcpyDeviceToHost) ;

// f i n a l number o f non−empty c e l l s
nonEmptyCellNumber += lastCe l l I sEmpty ;

Step 3 Stream compaction (aka enumerate operation) is used to generate
an array containing indicies of only non-empty cells. “Stream compaction”
operation requires two input arrays. First array contains boolean values
indicating whether respective elements from the second array need to be
copied to the output array. Example input datasets and output generated
by this operation are shown in fig. 1.9. In our case we provide an array
of flags d cellsNonEmpty and a “scanned” array of non-empty cell indices
d cellsNonEmptyScan:

cudppCompact (compactPlan , d compactedCel ls , d nonEmptyCellNumber ,
d cellsNonEmptyScan , d cellsNonEmpty , numCells) ;

After this step d compactedCells contains the set of indices of all non-
empty cells.

Step 4 As was mentioned earlier, generation of vertex buffer offsets for
each cell is performed using scan operation (similar to step 2). We apply
an exclusive scan again, as we need each element in the array to contain
the sum of previous elements excluding current element. First element in
the array of offsets should be equal to “0”. After the application of scan

i

i

i

i

i

i

i

i

1.3. Working with FRep models using GPU 13

Figure 1.9. Compact algorithm

operation each element of the d cellVBOffsets contains the total number
of vertices contained in preceding cells (i.e. offset in the vertex buffer that
can be used to output the vertices from the cell):

cudppScan (scanPlanExclus ive , d ce l lVBOf f s e t s ,
d c e l lVe r t s , numCells) ;

Figure 1.10. Offsets in vertex buffer for each cell

Step 5 Finally, we can start generating triangles and writing them to the
specified vertex buffer. Each vertex being generated is placed along one of
the 12 edges of the cell. Function value at each generated vertex is expected
to be equal to the threshold value (in this case vertex is placed on the
extracted isosurface). Thus we can linearly1 interpolate function values
along each edge in order to find locations where vertices have to be placed:

d e v i c e
f l o a t 3 i n t e r p o l a t ePo s i t i o n (f loat thresho ld ,

f l o a t 3 ce l lVer t ex1 , f l o a t 3 ce l lVer t ex2 ,

1Non-linear interpolation schemes can be used to improve the quality of the resulting
mesh [Tatarchuk et al. 07].

i

i

i

i

i

i

i

i

14 1. Polygonal-Functional Hybrids for Computer Animation and Games

f loat funcValue1 , f loat funcValue2)
{

f loat t = (th r e sho ld − funcValue1) /
(funcValue2 − funcValue1) ;

return l e r p (ce l lVer t ex1 , c e l lVe r t ex2 , t) ;
}

// wr i t e out v e r t i c e s and normals
g l o b a l void gene ra t eTr i ang l e s (. . .)

{
. . .
// v e r t i c e s p laced at the corners o f current c e l l
f l o a t 3 c e l l V e r t i c e s [8] ;
. . .
// f i e l d va lue s at the 8 corners o f current c e l l
f loat f i e l d [8] ;
f i e l d [0] = sampleVolume (gridPos , g r i dS i z e) ;
. . .
// array o f v e r t i c e s p laced along 12 edges o f the c e l l
// shared between d i f f e r e n t threads

s h a r e d f l o a t 3 v e r t i c e s [12 ∗ NTHREADS] ;

// f ind po s i t i o n s o f 12 v e r t i c e s a long a l l edges :
v e r t i c e s [threadIdx . x] = i n t e r p o l a t ePo s i t i o n (thresho ld ,

c e l l V e r t i c e s [0] , c e l l V e r t i c e s [1] ,
f i e l d [0] , f i e l d [1]) ;

v e r t i c e s [NTHREADS+threadIdx . x] =
i n t e r p o l a t ePo s i t i o n (thresho ld ,

c e l l V e r t i c e s [1] , c e l l V e r t i c e s [2] ,
f i e l d [1] , f i e l d [2]) ;

. . .
// l a s t v e r t e x
v e r t l i s t [(NTHREADS∗11)+ threadIdx . x] =

i n t e r p o l a t ePo s i t i o n (thresho ld ,
c e l l V e r t i c e s [3] , c e l l V e r t i c e s [7] ,
f i e l d [3] , f i e l d [7]) ;

// wait wh i l e threads are f i l l i n g ” v e r t i c e s ” b u f f e r
sync th r ead s () ;

. . .

You can see that vertices array is placed in shared memory. This is
done to decrease the amount of local storage required to run the kernel.
Additionally, this memory is accessed in a special way. Each vertex of the
cell is placed with a stride of NTHREADS elements. Thus helping to avoid
bank conflicts between the threads, i.e. consecutive threads access consecu-
tive memory addresses and such memory requests can be serialized2. These
are well-known optimization techniques often used in CUDA applications.

Once all output vertex positions have been retrieved they need to be
connected to form a set of triangles. We need to find MC case index again.

2This need not be done for devices with CUDA Compute Capability 1.2 and above

i

i

i

i

i

i

i

i

1.3. Working with FRep models using GPU 15

This index is used to read the set of vertex indices from the MC triangles
table. After this step a set of vertices and normals can be output to a
vertex buffer:

. . .
// ge t the number o f t r i a n g l e s t ha t need to be output
// in t h i s MC case
uint indexMC = getMCIndex (f i e l d , th r e sho ld) ;
u int numVerts = tex1Dfetch (numVertsTex , indexMC) ;

for (int i =0; i < numVerts ; i++) {

// f ind the o f f s e t o f t h i s v e r t e x in the v e r t e x b u f f e r
uint v e r t exO f f s e t = ce l lVBOf f s e t s [c e l l I n d e x] + i ;

i f (v e r t e xO f f s e t >= maxVerts) {
continue ;

}

// w i l l g e t the v e r t e x from the appropr ia t e
// edge o f the c e l l
uint edge = tex1Dfetch (tr iTex , (indexMC << 4) + i) ;

// wr i t e out v e r t e x po s i t i on to VB
f l o a t 3 p = v e r t l i s t [(edge∗NTHREADS)+threadIdx . x] ;
p o s i t i o n s [v e r t e xO f f s e t] = make f loat4 (p , 1 . 0 f) ;
// eva lua t e normal at t h i s po in t
normals [v e r t e xO f f s e t] = calcNormal (p) ;

}

In this case MC triangles table was earlier mapped to a 1D texture triTex
(in a fashion similar to the mapping of volume texture performed at step
1).

Per-vertex analytic normals (see equation 1.3) are retrieved using for-
ward differences approximation:

d e v i c e
f l o a t 4 calcNormal (f l o a t 3 p)
{

f loat f = f i e ldFunc (p . x , p . y , p . z) ;
const f loat de l t a = 0 .01 f ;
// approximate d e r i v a t i v e :
f loat dx = f i e ldFunc (p . x + del ta , p . y , p . z) − f ;
f loat dy = f i e ldFunc (p . x , p . y + del ta , p . z) − f ;
f loat dz = f i e ldFunc (p . x , p . y , p . z + de l t a) − f ;
return make f loat4 (dx , dy , dz , 0 . f) ;

}

It is important to note that polygonization does not have to be per-
formed for each frame. Depending on the available processing power mesh
extraction can be performed only once for a number of frames. Alpha

i

i

i

i

i

i

i

i

16 1. Polygonal-Functional Hybrids for Computer Animation and Games

blending between the extracted meshes can be applied to perform smoother
transition between them.

Note: An issuse of loading from and saving to global memory was men-
tioned in section 1.3.1. From the code provided in this section it can
be seen, that in case function values are not stored in the memory,
eight function evaluations need to be performed for each cell (see
sampleVolume() function). For instance, on a 64× 64× 64 grid one
would need to perform at least 2 million function evaluations (that
is 8 evaluations for each of 262144 cells) only to find out MC case
index for each cell. Add about 10-20% of this number to get the to-
tal number of all required function evaluations. This includes actual
vertex positions and normals calculation for non-empty cells. For
a number of example applications that will follow saving to global
memory results in better performance as memory latency is hidden
by the expensive function evaluations.

1.3.3 Rendering

Once vertex buffer has been filled with the geometry information it can be
rendered as any conventional polygonal model. We only need to enable a
shader making the extracted isosurface look more visually interesting (see
section 1.2.3).

It is worth noting that FRep models can be rendered using ray-casting
[Fryazinov et al. 08], thus avoiding the necessity to perform complex isosur-
face extraction procedure. Though at the moment only relatively simple
models can be rendered at high resolution in real-time [Kravtsov et al. 08].

1.4 Applications

In section 1.2 we have briefly described a small subset of FReps. In this
section we will demonstrate a number of applications (see fig. 1.1) that
can be implemented using the combination of FRep objects and poygonal
meshes.

1.4.1 Approach outline

Rigging skeleton is commonly used to animate polygonal meshes. Convolu-
tion surfaces described in section 1.2.2 as well as a number of other implicit
surfaces can also be animated using similar skeleton3. We will use a skele-

3We have chosen convolution surfaces mainly because of their relatively simple defin-
ing function and an absence of bulges and other unwanted artefacts

i

i

i

i

i

i

i

i

1.4. Applications 17

ton as a base for the integration of FReps and polygonal models together.
The use cases we will refer to can be generally classified as follows :

1. Embedding FRep object inside mesh object or coating mesh objects
with FRep objects (fig. 1.11)

2. Attaching FRep object to the mesh (fig. 1.11)

3. Attaching polygonal object to the FRep object (fig. 1.19)

Figure 1.11. Possible approximations

We will provide detailed description of each case.

1.4.2 Embedding FRep object inside mesh object

The embedding of FRep object allows us to mimic the interaction of a
viscous object with an animated character (fig. 1.12) as well as “supra-
natural” behaviour of the liquid material (fig. 1.16).

In this case we approximate an animated mesh with a convolution sur-
face using the rigging skeleton. Resulting convolution surface is expected
to be completely hidden inside the mesh. In most cases the approxima-
tion needs to be performed only once for the characters bind pose. We
can estimate the parameters of the embedded convolution surface using
the available information. For the initial approximation we use the rigging
skeleton. Given the set of bones of the rigging skeleton, where each bone is
a line segment in 3D space, we use the set of these segments as the basis for

i

i

i

i

i

i

i

i

18 1. Polygonal-Functional Hybrids for Computer Animation and Games

(a) Preview of intermediate results as seen in the window of
the tool

(b) “Sinking” (c) “Walking out”

Figure 1.12. The interaction of an animated object with viscous liquid

an initial convolution skeleton4. To calculate the radius of the convolution
surface for each segment, we calculate the minimal distance between each
line segment. For the set of rigging skeletal bones si ∈ S (where S is a set
of skeletal bones) the radius of the i-th convolution surface associated with
the i-th bone is:

ri = min
pj∈P

(dist(si, pj)) ,

where pj is the j-th face of the polygonal mesh, P is a connected set of
faces and dist(si, pj) is the distance between the bone si and the face pj .
Thus, each individual convolution surface is fitted inside the mesh in its
initial position.

After the initial approximation a global optimization is usually re-
quired to achieve a better approximation of the given polygonal mesh using
the embedded convolution surface (more details are provided in [Kravtsov
et al. 08]). Additional embedding optimization step is usually necessary

4Convolution skeleton does not need to have the same configuration as the original
rigging skeleton. For instance, it can have different number of bones or positions of the
bones can differ. The only requirement is that convolution skeleton should be defined
relative to the rigging skeleton

i

i

i

i

i

i

i

i

1.4. Applications 19

because only individual convolution surfaces are considered at the initial
approximation step. In fact the fields produced by all convolution surfaces
sum up, which is equivalent to the increase of the radius of the individual
convolution surfaces. This is especially noticebale in the locations near the
skeleton branches. Alternatively, instead of global non-linear optimization
an artist can manipulate radius values of individual convolutions to achieve
better embedding. Note that, if we wish to apply the blending union op-
eration described in section 1.2.1, the quality of the initial approximation
does not play a significant part in this process.

Figure 1.13. Synchonization of polygonal and functional objects

After the approximation step the segments of the convolution skeleton
are transformed relative to the transformation of the rigging skeleton, hence
the motion of the convolution surface is synchronized with the motion of
the animated mesh (see fig. 1.13). Once the approximation of the animated
mesh has been retrieved, we can apply FRep operations to achieve a number
of effects (see fig. 1.14).

As the first application of our technique, we mimic the interaction of
a viscous object with an animated object using the blending union of two
implicit surfaces. As we mentioned above, the FRep object corresponding
to the initial mesh is an embedded convolution surface. The second FRep
object representing the viscous object can be modelled using a set of im-
plicit primitives. If the defining functions of both objects have distance
properties, the shape of the surface resulting from the blending operation
depends on the distance between the original objects. The further the
objects are from each other the less they are deformed (see fig. 1.15).

The behaviour of the blended shape visually resembles adhesion, stretch-
ing and breach of the viscous material. If the blended shape is rendered to-
gether with the polygonal mesh, a part of the convolution surface embedded
within the mesh becomes visible due to the deformation, thus contributing
to the material interacting with the mesh (see fig. 1.12). Thus, the quality
of the initial approximation of the mesh by the convolution surface does
not play a significant part in this application. It is more important just to
fully embed the convolution surface into the mesh when no deformation is
applied. Surely, such approach is aimed at achieving verisimilitude rather
than physically correct results.

i

i

i

i

i

i

i

i

20 1. Polygonal-Functional Hybrids for Computer Animation and Games

Figure 1.14. Approach outline

(a) (b) (c)

Figure 1.15. Phases of interaction between animated blended objects: (a) Two
objects and a single blend shape during blending, (b) The boundary case before
two shapes separate, (c) Two separate shapes with some deformation showing
the objects’ reciprocal attraction

The aforementioned approach can be used to model “supra-natural” be-
haviour of the liquid material. In such an animation effect the convolution
surface radii are increased over time, which creates the effect of the liquid
flowing up the mesh and gradually engulfing it. It is possible to automati-
cally generate this sort of animation. The artist only needs to specify the
first and last joint of the skeletal chain as well as the final “thickness” of
the liquid flowing over the mesh (see fig. 1.16).

i

i

i

i

i

i

i

i

1.4. Applications 21

(a) Liquid covering animated mesh

(b) “Mirror”

(c) “Desert”

Figure 1.16. The interaction of an animated object with viscous liquid

1.4.3 Attaching FRep object to the mesh

In this case we attach an implicit surface to the mesh. To do so, we
attach a skeleton defining convolution surface to the rigging skeleton that
is animated in a usual way (fig. 1.17). Optionally the implicit surface can
be fitted at its boundary attachment to the polygonal mesh. Animation
of the skeleton defining convolution surface leads to the automatic changes
of the attached functional object, which means the resulting shape can be
dramatically changed. No additional blending is required as convolution
surfaces are automatically blended with each other. This approach can be
used for the creation of easily metamorphosing parts of animated characters
(1.18a). It is also possible to perform metamorphosis between implicit limbs
with quite different geometry and topology. The user just needs to specify
two skeletons (1.18b) and the time needed to morph from one to another.
The intermediate meshes are generated automatically (1.18c).

i

i

i

i

i

i

i

i

22 1. Polygonal-Functional Hybrids for Computer Animation and Games

Figure 1.17. Attachment of functional object

(a) “Organic hand”

(b) “Mermaid” (blue)
and “spider” (red)
skeletons

(c) “Mermaid to spider”

Figure 1.18. Controlled metamorphosis sequences

1.4.4 Attaching polygonal object to the FRep object

In this case skeleton controlling functional object is defined independently.
FRep object can be placed in the virtual environment as a self-contained
entity. Various special effects can be implemented for this entity. The

i

i

i

i

i

i

i

i

1.5. Tools 23

Figure 1.19. Attachment of polygonal object to the functional object

interaction with polygonal objects can be performed using the “implicit
skeleton”. The polygonal objects can be attached to this skeleton and
follow its motion (see fig. 1.19). Collision detection with FRep object can
also be implemented in a relatively simple way, as the scalar field produced
by such object has distance properties.

One can notice that implicit surfaces are a great tool in defining complex
dynamic shapes with arbitrary topology. They can also be used for the
creation and modification of the user generated content (similar to EA’s
“SporeTM”). The user can define the skeleton and tweak its parameters
seeing the resulting shape in real-time (see fig. 1.1b). After the extraction
of the convolution surface it can be assigned skinning weights and later
used in the virtual environment. LODs for such a mesh can be generated
automatically via variation of the polygonization grid resolution (fig. 1.2).

We show the times required to evaluate the field and extract the mesh
in table 1.1.

1.5 Tools

Any technique loses its value if no appropriate tools are available for peo-
ple who are actually producing the content. We wanted to demonstrate
that the proposed approach can be employed in a conventional animation
pipeline with near real-time preview without a significant effort. Thus we
have implemented our approach as a plug-in for MayaTM. We have chosen
Maya as it is a popular tool for modelling and animation used by a lot of
professional artists. Our plug-in performs polygonization on the CPU and

i

i

i

i

i

i

i

i

24 1. Polygonal-Functional Hybrids for Computer Animation and Games

Grid “Supra-natural” Andy Hybrid Andy

resolution for (11 segments) (45 segments) (10 segments)

polygonization

32x32x32 3 ms 9 ms 2 ms
64x64x64 7 ms 22 ms 3 ms

128x128x128 30 ms 95 ms 14 ms

Table 1.1. Average times for mesh generation (milliseconds/frame) on an
NVIDIA GeForce 8800 Ultra, 768 MB of RAM; Andy is a mesh model with
an embedded convolution surface (Fig. 1.12), Hybrid Andy is shown in figure
1.18(a))

Grid “Supra-natural” Andy Hybrid Andy

resolution for (11 segments) (45 segments) (10 segments)

polygonization

20x20x20 25 ms 80 ms 30 ms
30x30x30 80 ms 220 ms 60 ms
50x50x50 310 ms 930 ms 260 ms
70x70x70 810 ms 2580 ms 670 ms

Table 1.2. Average times for mesh generation (milliseconds/frame) on a PC with
a Dual Core Intel Xeon (2.66 GHz), 2 GB of RAM

feeds the extracted mesh back to the modelling package. All the scenes
illustrating the aforementioned use cases were defined using a set of devel-
oped plug-ins. Even though all calculations are performed on the CPU,
intermediate results can be seen in the editor in near real-time (fig. 1.20).
The actual times for a number of models are shown in table 1.2. Alter-
natively, the mesh extracted on the GPU could be copied to RAM and
provided to MayaTMfor further manipulation and rendering.

Integration of our technique into an existing animation package can
decrease the learning curve for the user. The user is free to produce an
animation sequence in a way that he is accustomed to within the familiar
software environment, while having an opportunity to see the results of
his actions in near real-time. Thus, the incorporation of the plug-in in a
general-purpose animation software package allows the user to easily in-
tegrate the produced animation into complex scenes developed using this
package.

i

i

i

i

i

i

i

i

1.6. Limitations 25

Figure 1.20. A screenshot of the working environment

1.6 Limitations

The proposed approach has some limitations that we will discuss in this
section.

The applied blending operation is based on the distance properties of
the functions defining the initial geometric objects being blended. The
scalar fields produced by known convolution surface kernels significantly
decrease as the distance from the line segment increases. At a particular
distance from the line segment the values of such a field are almost equal
to zero and no blend shape is generated at these distances by the blending
operation. Thus, it is hard to model the interaction between the mesh and
the viscous object at large distances. In such cases, an approximation of the
mesh with a set of blended quadric surfaces could provide better results.
Additionally as the distance between the two blended objects increases,
the deformation of the convolution surfaces decreases until these surfaces
are again embedded into the polygonal mesh and are no longer visible.
The proposed method does not allow us to easily model the separation
of droplets of the viscous liquid from the mesh. If this effect is desired,
some additional particles modelling this effect could be attached to the
mesh. It is also possible to introduce particles to the viscous object. These
can improve the visual quality and dynamism of the resulting animation
sequence. Simplified particle based physical models can be applied to the
implicit model to improve the default behaviour of the viscous object. A
metaball representation of the particles is frequently used to integrate these
particles into the implicit model. Particle positions retrieved after the
physical simulation could be used to add metaballs to the final model. This

i

i

i

i

i

i

i

i

26 BIBLIOGRAPHY

would allow for partial modelling of physically correct behaviour within the
existing geometric model.

Also proposed approximation for polygonal meshes can only provide
good results for typical skeletal characters with axial symmetry. Other
types of meshes may require additional efforts in order to achieve better
approximation.

1.7 Conclusions

We have outlined a number of advantages of Function Representation
(FRep) and demonstrated a number of applications suitable for computer
animation and games. This representation has low memory requirements.
Natural resolution independence of the original model allows us to adjust
rendering quality according to available hardware specs. The discretiza-
tion of the model can be performed in parallel, so that it is well suited for
modern GPUs and CPUs with an ever increasing number of internal cores.

We believe that FReps have many more useful applications in the fields
of computer animation and games.

1.8 CD contents

CD contains source code of the implementation of the proposed approach
based on NVIDIA CUDA SDK release 2.1.

Bibliography

[Blinn 82] James F. Blinn. “A Generalization of Algebraic Surface Draw-
ing.” ACM Trans. Graph. 1:3 (1982), 235–256.

[Bloomenthal and Shoemake 91] Jules Bloomenthal and Ken Shoemake.
“Convolution surfaces.” SIGGRAPH Comput. Graph. 25:4 (1991),
251–256.

[Ebert et al. 02] David S. Ebert, Kenton F. Musgrave, Darwyn Peachey,
Ken Perlin, and Steven Worley. Texturing & Modeling: A Procedural
Approach, Third Edition (The Morgan Kaufmann Series in Computer
Graphics). Morgan Kaufmann, 2002.

[Fryazinov et al. 08] O. Fryazinov, A. Pasko, and Adzhiev V. “An Ex-
act Representation of Polygonal Objects by C1-continuous Scalar

i

i

i

i

i

i

i

i

BIBLIOGRAPHY 27

Fields Based on Binary Space Partitioning.” Technical Report ”TR-
NCCA-2008-03”, The National Centre for Computer Animation,
Bournemouth University, UK, 2008.

[Geiss 07] Ryan Geiss. GPU GEMS 3, Chapter Generating Complex Pro-
cedural Terrains Using the GPU, pp. 7–38. Addison-Wesley Profes-
sional, 2007.

[Jin et al. 01] Xiaogang Jin, Chiew-Lan Tai, Jieging Feng, and Qunsheng
Peng. “Convolution surfaces for line skeletons with polynomial weight
distributions.” J. Graph. Tools 6:3 (2001), 17–28.

[Kravtsov et al. 08] D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, and
P. Comninos. “Embedded Implicit Stand-ins for Animated Meshes: a
Case of Hybrid Modelling.” Technical Report ”TR-NCCA-2008-01”,
The National Centre for Computer Animation, Bournemouth Univer-
sity, UK, 2008.

[Lorensen and Cline 87] William E. Lorensen and Harvey E. Cline.
“Marching cubes: A high resolution 3D surface construction algo-
rithm.” In SIGGRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, 21, 21, pp. 163–169.
ACM Press, 1987.

[McCormack and Sherstyuk 98] Jon McCormack and Andrei Sherstyuk.
“Creating and Rendering Convolution Surfaces.” Comput. Graph. Fo-
rum 17:2 (1998), 113–120.

[NVIDIA 09] NVIDIA. “NVIDIA R© Compute Unified Device Architecture
(CUDATM). Introduction & Overview.”, 2009.

[Pasko et al. 95] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko.
“Function Representation in Geometric Modeling: Concepts, Imple-
mentation and Applications.” The Visual Computer :11 (1995), 429–
446.

[Ricci 73] A. Ricci. “A Constructive Geometry for Computer Graphics.”
The Computer Journal 16 (1973), 157–160.

[Sengupta et al. 07] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and
John D. Owens. “Scan Primitives for GPU Computing.” In Graphics
Hardware 2007, pp. 97–106, 2007.

[Sengupta et al. 08] Shubhabrata Sengupta, Mark Harris, and Michael
Garland. “Efficient Parallel Scan Algorithms for GPUs.” Technical
Report NVR-2008-003, NVIDIA Corporation, 2008.

i

i

i

i

i

i

i

i

28 BIBLIOGRAPHY

[Tatarchuk et al. 07] Natalya Tatarchuk, Jeremy Shopf, and Christopher
DeCoro. “Real-Time Isosurface Extraction Using the GPU Pro-
grammable Geometry Pipeline.” In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 courses, pp. 122–137, 2007.

[Uralsky 06] Y. Uralsky. “DX10: Practical Metaballs and Implicit Sur-
faces.” Technical report, NVIDIA Corporation, 2006.

