
Volume xx (200y), Number z, pp. 1–12

Embedded Implicit Stand-ins for Animated Meshes:

a Case of Hybrid Modelling

D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos

The National Centre for Computer Animation, Bournemouth University, UK

Abstract

In this paper we address shape modelling problems, encountered in computer animation and computer games

development that are difficult to solve just using polygonal meshes. Our approach is based on a hybrid modelling

concept that combines polygonal meshes with implicit surfaces. A hybrid model consists of an animated polygonal

mesh and an approximation of this mesh by a convolution surface stand-in that is embedded within it or is attached

to it. The motions of both objects are synchronised using a rigging skeleton. We model the interaction between

an animated mesh object and a viscoelastic substance, which is normally represented in an implicit form. Our

approach is aimed at achieving verisimilitude rather than physically based simulation. The adhesive behaviour

of the viscous object is modelled using geometric blending operations on the corresponding implicit surfaces.

Another application of this approach is the creation of metamorphosing implicit surface parts that are attached to

an animated mesh. A prototype implementation of the proposed approach and several examples of modelling and

animation with near real-time preview times are presented.

1. Introduction

In modern computer graphics and animation systems polyg-
onal and NURBS meshes are predominantly used for mod-
elling. On the other hand, implicit surfaces (defined by
continuous scalar fields and discrete level sets) have been
shown to have a great potential in various related applica-
tion areas, in particular in the modelling of human and an-
imal figures [ST95], in the simulation of natural phenom-
ena [WLK03], in the simulation of object cracking and ex-
plosions [BGA05], and in geometric operations (such as off-
setting, blending and metamorphosis [PASS95]).

Hybrid models combining different geometric representa-
tions, for example polygonal meshes and implicit surfaces
[AKK∗02, AGCA06], are emerging in geometric modelling
as a potentially promising area of investigation. It is antici-
pated that computer animation and computer games in par-
ticular would benefit greatly from the closer integration of
mesh and implicit surface models. One of the many aspects
of hybrid modelling concerns the generation of a continuous
scalar field around an animated polygonal mesh to make it
visually behave as an implicit surface. Another aspect con-
cerns the combination of meshes and implicit surface com-

ponents into a single hybrid model. Such hybrid models can
then be used to create animation effects which are very hard
or impossible to achieve using pure mesh models. For the
creation of a continuous scalar field around an animated
mesh, we consider an embedded implicit surface (meaning
a surface completely hidden inside the mesh) synchronously
moving with it and used only when special effects involv-
ing scalar fields are required. An example of such an effect
is the blending between the embedded implicit surface and
another implicit surface representing a viscous object. One
way of combining a mesh with an implicit surface would be
to attach the implicit surface to it. An attachment area is a
surface patch which is shared by both the implicit surface
and the mesh surface [AKK∗02].

Polygonal meshes and certain types of implicit surfaces can
be animated using a rigging skeleton. We consider a skele-
ton as a proper base for their integration into hybrid mod-
els. There are many candidates for such integration among
implicit surfaces, namely soft objects, distance-based blobs,
ellipsoids, convolution surfaces, constructive solids built of
cylinders, spheres, and other primitives. The main require-
ments for an implicit surface are: a relatively simple defin-
ing function, which is fast to evaluate, easy manipulation us-

2 D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling

ing skeletons and an absence of buldges and other unwanted
artefacts, which require additional processing. We have se-
lected convolution surfaces [BS91, MS98] for this purpose,
as they satisfy all these requirements, however other types
of implicit surfaces can be also utilized within the proposed
approach.

We propose to embed an implicit convolution surface inside
an animated mesh or to attach it to the mesh such that the
motions of both types of object are synchronised. The ob-
jects can either share a common skeleton or have individual
synchronously moving skeletons.

An embedded convolution surface has to closely approxi-
mate the embedding mesh such that its motion requires no
changes or minimal changes of the convolution surface pa-
rameters. This may require a procedure for fitting a convolu-
tion surface to an initial mesh taking into account its speci-
fied motion, which can be achieved using a global minimiza-
tion of the overall algebraic distance of the mesh nodes to the
convolution surface. Interaction of a viscous object with an
animated object is modelled using geometric blending oper-
ations on the corresponding implicit surfaces. Note that the
initial animated mesh is rendered in the final animation to-
gether with the blending surface, which creates the visual
effect of the blending of the mesh itself. Thus the embedded
convolution surface serves as an implicit stand-in for the an-
imated mesh.

The main contributions of this paper are the following: (1) a
hybrid model combining skeleton driven animated meshes
with skeleton-based implicit surfaces, (2) a procedure for
fitting a convolution surface to an animated mesh and (3)
applications of such hybrid models for the simulation of
viscous object behaviour. Some of these applications call
for blending between mesh models animated using conven-
tional skeleton techniques. We also present another applica-
tion concerned with the creation of easily metamorphosing
parts for animated characters (see fig. 10,12).

In the areas of computer animation and digital special ef-
fects production it is a well established fact that physically
correct simulation is often an inappropriate technique to use,
as it often interferes with the intended development of the
narrative. Consider for instance the following two examples
which may arise in such productions. In a cartoon-style ani-
mation, a character may step over the edge of a precipice but
he does not fall immediately as would be physically correct.
He remains suspended in mid-air until he realises that the
ground no longer supports his weight and only then he be-
gins to fall. Similarly in a digital effects sequence, a digital
stand-in character may leap from building to building in defi-
ance of gravity or a column of water is suspended in mid-air,
morphs into a human face and starts talking to a real actor. In
such scenarios what animators are looking for is not physi-
cal correctness of the event or phenomenon, but for some
form of believable semblance of reality (i.e., verisimilitude),
which is inspired by physical reality but bends this reality to

allow them to advance the story narrative. Instead of a phys-
ically correct simulation what is required is a set of tech-
niques and tools that would allow the animator to alter, to
tune and to cheat reality. These may be physically inspired,
but not physically correct, and must be able to be directable
by the animator, so that they produce the desired visual ef-
fects. Physically-correct simulation techniques can often be
combined with physically-inspired verisimilitude techniques
but they must be directable by the artist and subordinated to
the story-telling process. Additionally when such techniques
are used in the development stage of computer animation and
digital effects sequences or in a computer game they must
produce believable visual results in real-time or near-real-
time.

Having a good understanding of computer animation pro-
duction requirements, we aim to provide the animator with a
simple tool based on purely geometric methods which allows
the creation of complex animations satisfying the specified
requirements.

2. Related work

In this section we discuss two groups of publications, the
first group relates to the general usage of implicit surfaces in
computer animation and the second is concerned with spe-
cific applications of viscous objects simulation.

2.1. Implicit and hybrid models in animation

Many authors have used implicit surfaces for character an-
imation. Elliptical blobs for skeletal animation were used
in [Bli82], where the transformation of the blob is inher-
ited from the transformation of the joints of the skeleton.
In [OM95], blobby objects were used, which are quite easy
to define. However, with this method it is difficult to control
the resulting "blobby" mesh. In addition, a large number of
primitives is usually needed to model an appropriate mesh.

One of the earliest attempts of using hybrid modelling in-
volved embedding mesh objects into implicit surface prim-
itives [SP95] to implement polyhedral object deformations
of articulated deformable bodies. Skeleton-based implicits
for non-polygonal animated objects were examined, for in-
stance in [CG98], where skeletal geometric primitives that
produce distance fields were used for character animation
- although this technique may lead to C1 discontinuities
in the resulting surfaces. The coating of arbitrary animated
models by implicit surfaces, employed in this technique, is
not always acceptable to animators. We consider our ap-
proach complementary to the coating technique. Mixing of
implicit surfaces and polygonal models was performed in
[LAG01]. In this work specific regions of an animated mesh
were deformed using implicit primitives attached to the an-
imated skeleton. Polygonal meshes and implicit primitives
were also combined together in a HybridTree [AGCA06]
using blending, Boolean and other operations supported by

D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling3

the conversion procedures between two different models.
However, embedding, attachments and skeleton-based mo-
tion synchronisation of meshes and implicits as well as an
implementation in a general animation system were not di-
rectly addressed.

Implicit surfaces were also used for the approximation of
polygonal meshes using different approaches, such as Ra-
dial Basis Functions (RBFs) [SPOK95] and Multi-level Par-
tition of Unity implicits (MPUs) [OBA∗03]. These methods
generally work well with static meshes, but are less suitable
for animation because dynamic models require per-frame re-
fitting and can not be easily edited by the user due to the
complicated handling of the implicit surface.

One of the interesting alternatives among implicit surfaces
is that of convolution surfaces [BS91]. Convolution surfaces
can be smoothly blended with each other and provide a
good approximation for polygonal meshes typical for skele-
tal characters with axial symmetry [MS98]. In this paper we
utilise convolution surfaces with line segment skeletons for
hybrid modelling applications.

2.2. Interaction of viscous objects with meshes

The main technique for modelling viscous objects is fluid
simulation. Thus, in [FF01] the use of a combination of
level-set implicit surfaces and inertia-free particles was pro-
posed for modelling the interaction of fluids with polygonal
meshes. Also, [TKPR06] describes the generation of con-
trol particles with respect to the underlying mesh model. De-
spite the good control of the shape of the viscous object that
these methods exhibit, they are computationally expensive
and do not consider the animation of the mesh. The approach
described in [CBP05] uses smoothed particle hydrodynam-
ics and additional physical simulation to model viscoelas-
tic objects and their interaction with rigid bodies. This ap-
proach is not well suited for the modelling of interactions
with animated polygonal objects and it may require a sig-
nificant number of particles for the simulation of liquid sub-
stances. In [JLW∗05] blobby objects are used to approximate
a static mesh. These blobby objects are then used in an in-
terpolation process to achieve morphing liquid effects. The
presented mesh fitting is a lengthy offline process. This ap-
proach also does not allow for the metamorphosis between
animated meshes.

[MTPS04] proposed a method to control fluid simulations
through a number of keyframes supplied by the user. Inter-
actions of viscoelastic materials with the meshes was per-
formed in [GBO04]. Two-way coupling between rigid bod-
ies and fluids was implemented in [CMT04]. This allows for
the creation of realistic animations involving interactions of
solid objects with fluids. The drawbacks of the methods are:
a lengthy simulation process and poor artistic control (i.e.
directability) of the resulting effects.

The authors of [SY05] used the signed distance to a skeleton

to control the animation of fluids. This approach provides
the animator with more control over the resulting animation
sequence, but the computation times involved are still rel-
atively high and the animator is required to manually tune
the physical parameters of the simulation for different types
of meshes and animation sequences. Thus, even the initial
tuning can be time consuming.

It is often the case that a combination of different techniques
is used for the emulation of viscous materials. In our work
we simulate objects composed of viscous materials using a
geometric blending between the implicit objects generated
from given polygonal meshes. We aim to provide the user
with a simple tool which allows the creation of complex an-
imations with convincing visual results in real-time or near-
real-time.

3. Problem statement and approach outline

In this paper we address problems that appear in computer
animation practice and are difficult or impossible to solve
using polygonal meshes exclusively. We particularly exam-
ine problems associated with the creation of effects such as
objects blending using scalar fields associated with polygo-
nal meshes and the modelling of freely transformable objects
involving meshes with implicit surface components. Our ap-
proach relies upon hybrid modelling combining polygonal
meshes with implicit surfaces. In general, there are three
main ways of achieving this: (a) by coating of meshes with
implicit surfaces, (b) by embedding implicit surfaces inside
mesh objects, (c) by attaching external implicit surfaces to
mesh surfaces. Coating was discussed in [CG98] (see the
previous section). In this paper, embedding is applied in or-
der to achieve blending effects and attaching is used in or-
der to construct metamorphosing parts of hybrid models. An
important constraint that applies to our approach is the near
real-time rendering of all hybrid models.

Let an animated object be defined by a polygonal mesh (Fig.
1a), with a rigging skeleton (Fig. 1b), skinning informa-
tion (Fig. 1c) and a set of animation transformations for its
skeletal nodes. A rigging skeleton is a set of hierarchically
connected joints used to specify the motion of a mesh model
in an animation sequence. If there is no skeleton provided,
it can be automatically extracted from the polygonal mesh
using one of the published techniques [BP07].

An important application area for embedded implicit sur-
faces is the modelling of viscoelastic object adhesive be-
haviour in its interaction with an animated mesh object. To
obtain visually plausible results with near real-time preview,
we propose to replace the mesh object with an implicit sur-
face stand-in and then to apply geometric blending between
the implicit surfaces representing both interacting objects.

A viscoelastic object can be represented either by an implicit
surface or by another polygonal mesh (which has to be con-
verted to an implicit surface). We will mainly concentrate on

4 D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling

(a) (b) (c)

Figure 1: Animated mesh information: (a) Polygonal

mesh, (b) Rigging skeleton, (c) Skinning information. Model

"Andy" courtesy of John Doublestein.

the former case to simulate such viscous substances as jam,
honey or tar, and to show how such liquids interact with an
animated object. Thus we will deal with the adhesion of the
liquid to the surface, its stretching following the object’s mo-
tion and other related topics.

Natural controllable blending is one of the best-known use-
ful properties of implicit surfaces. We will use this property
for modelling the adhesive behaviour. This, in general, as-
sumes the conversion of the animated mesh into an implicit
surface. However, an exact conversion of this type is a com-
plex task. We propose to use a hybrid model which includes
a polygonal mesh and an approximation of this mesh by
some implicit surface embedded within it using a fitting pro-
cedure. It is impractical to perform this fitting to the mesh
for each frame of the animation. Thus, it is preferable that
an implicit surface is made to follow the motion of the ani-
mated mesh. A convolution surface satisfies this requirement
when its skeleton is built using the rigging skeleton of the
animated mesh and the motions of both skeletons are syn-
chronised. This derived convolution surface can be blended
with the implicit surface, representing the viscous liquid, to
mimic their adhesive interaction. The fitting procedure pro-
vides the convolution surface with a minimal distance mea-
sure to the mesh. This is required in order to create the visual
effect of the mesh being blended with the viscous liquid. The
resulting convolution surface can be polygonized to obtain a
near real-time preview or can be ray-traced to produce the
final animation sequence.

4. Background

In this section we describe the basics of convolution surfaces
and the operation of blending union both of which are used
in our approach.

4.1. Convolution surfaces

Convolution surfaces were first introduced in [BS91]. Given
a scalar field function f , such as:

f (p) =
∫

S

g(r)h(p− r)dr;p,r ∈ R
3

where S is a skeleton specifying the resulting surface, r ∈
R3 is a set of points that belong to the skeleton S, g(r)
defines the geometry of the primitives (i.e. the skeleton
function), h(p) is a kernel function and p is an arbitrary point
in space. Thus, the convolution surface on the primitive is a
point set satisfying the equality:

f (p)−T = 0

where T is a threshold scalar value for the convolution func-
tion. In our method we use convolution surfaces based on
line segments and a Cauchy kernel [MS98]. Thus,

h(d) =
1

(1+ s2d2)2 ;d > 0

where d denotes the Euclidean distance from a point of in-
terest and s is a scalar value controlling the convolution sur-
face.
Given a line segment

r(t) = b + ta; 0 ≤ t ≤ l

where b is the segment base (poistion vector), a is the seg-
ment axis (direction vector) and l is the segment length. For
an arbitrary point p ∈ R3 the squared distance between r(t)
and p would be:

d
2(t) = |q|2 + t

2 − 2t(q ·a)

where q = p−b.
A field function for an arbitrary point p would be:

f (p) =

l
∫

0

dt

(1+ s2d2(t))2 =
x

2m2
(

m2 + s2x2
) +

l − x

2m2n2 +

1
2sm3

(

arctan
[

sx

m

]

+ arctan

[

s(l − x)

m

])

where x is the coordinate on the segment’s axis,

x = (p−b) ·a

m
2 = 1+ s

2(q2 − x
2)

n
2 = 1+ s

2(q2 + l
2 − 2lx)

The main advantage of a convolution surface is the smooth
transition between its parts that are defined by different
skeletal elements (Fig. 2b). When moving skeletal elements,
the convolution surface follows their movement quite natu-
rally, which is useful in animation.

D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling5

4.2. The blending union of implicit surfaces

Given two implicit surfaces,

f1(x,y, z) = 0 and f2(x,y, z) = 0 ,

the blending operation between these surfaces is defined
as [PASS95]:

blend(f1, f2) = union(f1, f2)+disp(f1, f2),

where union is the set-theoretic union function and disp is
a displacement function, that is defined as:

disp(f1, f2) =
a0

1+

(

f1

a1

)2

+

(

f2

a2

)2

where a0, a1 and a2 are blending parameters. Here a0
controls the overall resulting shape, a1 and a2 specify the
contributions to the blending by the shapes defined by func-
tions f1 and f2.

Using R-functions the formula for the following blending
operation can be obtained as:

blend(f1, f2) = f1 + f2 +
√

f 2
1 + f 2

2 +
a0

1+

(

f1

a1

)2

+

(

f2

a2

)2

R-function based blending is more suitable for user interac-
tion when compared with the direct algebraic summation of
the defining functions, because several parameters are pro-
vided to control the overall shape of the blend and its sym-
metry. If it is preferable that blending takes place inside a
particular volumetric shape, we use a bounded blending op-
eration [PPK05].

5. The proposed approach

In this section we systematically describe our approach
for the construction of hybrid models combining animated
meshes with embedded or attached convolution surfaces.
The proposed solution, outlined in Section 3, can be sub-
divided into the following steps:

1. The creation of the initial approximation of the given
mesh with bounding volumes using the skeletal informa-
tion.

2. The tuning of the initial approximation.

3. The creation of an embedded convolution surface for the
initial polygonal mesh.

4. One of two application steps: (a) the definition of the
blending between the convolution surface and the vis-
cous object for the modelling of the adhesive behaviour

of this viscoelastic object and its interaction with an an-
imated object or (b) the creation of metamorphosing im-
plicit parts for an animated mesh.

Each step requires the rendering of the current convolution
surface and either the blending surface or the attached con-
volution surface. Note that both application steps can be per-
formed together, when an animated mesh with attached im-
plicit parts is interacting with a viscous material.

5.1. The initial mesh approximation

As was mentioned earlier, the procedure for embedding an
implicit surface inside the mesh requires a global minimi-
sation of the algebraic distance measure between the mesh
nodes and the convolution surface.

As the first step of the global minimisation procedure, we
can estimate the parameters of the convolution surface using
the available information. For the initial approximation we
use the rigging skeleton. Given the set of bones of the rigging
skeleton, where each bone is a line segment in 3D space, we
use the set of these segments as the basis for an initial convo-
lution skeleton. We denote the start and end vertices for each
such a skeletal segment as markers. To calculate the radius
of the convolution surface for each segment, we calculate
the minimal distance between each line segment specified
by the markers and the polygonal mesh. At this stage we can
build bounding volumes around each line segment for the
real-time preview of the convolution surface. The bounding
volume for each segment is a cylinder. For the set of rigging
skeletal bones si ∈ S (where S is a set of skeletal bones) the
radius of the i-th cylinder associated with the i-th bone is:

ri = min
pj ∈ P

(dist(si,pj)) ,

where pj is the j-th face of the polygonal mesh, P is a con-
nected set of faces and dist(si,pj) is the distance between
the bone si and the face pj. Thus, each bounding volume is
fitted inside the mesh in its initial position. Rendering these
bounding volumes helps the user to better understand how
the resulting approximating convolution surface is embed-
ded into the mesh (Fig. 2).

In the next step we perform a global optimisation to achieve
a better approximation of the given polygonal mesh using
the embedded convolution surface. A similar problem in 2D
space was addressed in [TZF04] using a silhouette curve
sketched on a plane as the desired shape of a convolution sur-
face. We extend this problem formulation to the 3D case of
the convolution surface embedment into the polygonal mesh.
In our formulation

F(p) =
N

∑
i=1

fi(p) is a field produced by all the line segments

at a point p;
V = {v1, ..,vn} are mesh vertices;
C = {c1, ..,cm} are the centroids of mesh triangles;

6 D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling

(a) (b)

Figure 2: Initial approximation: (a) Initial placement of

bounding volumes inside the mesh, (b) Produced convolu-

tion surface

D = {d1, ..,dk} are points on the mesh closest to the skele-
ton line segments;
P = G(V∪C∪D) = G(v1, ..,vn,c1, ..,cm,d1, ..,dk) are fil-
tered estimation points; where

G(p1, ..,pn+m+k) = G(p1)∪ ..∪G(pn+m+k) = {p
′
1, ..,p

′
M}

G(pi) =

{

∅,F(pi) < T

pi,F(pi) ≥ T

The filtering of the estimation points helps to reduce the di-
mensionality of the task. This reduces the processing time
needed for the optimisation procedure. We apply the op-
timisation considering only the points on the mesh which
are situated inside the convolution surface (i.e., in regions
where the initial convolution surface is not embedded into
the mesh).

Given that,
L = {l1, .., lh} are convolution line segments;
Fi = [fi(p

′
1), .., fi(p

′
M)]> is a transposed vector of field val-

ues produced by the i-th convolution line segment at the es-
timation points;
F = [F1, ..,FN] are the field values produced by all line seg-
ments at all estimation points;
T = [T, ..,T]> is a transposed vector of threshold values
for the convolution surface. Thus we need to solve the con-
strained least-squares problem:

min
0≤Λ≤1

(FΛ−T)>(FΛ−T)

for the unknown weights of field contribution from each line
segment Λ = [λ1, ..,λN]>. The constraint λk ≥ 0 is given
for the topological correctness of the resulting convolution
surface. The constraints λk ≤ 1;k = 1...N are intended to
ensure that the convolution surface is completely embedded
into the mesh (at least at all the estimation points) and that
the conditions of the initial approximation were not violated.
We also take into account the embedding constraint F(p) ≤
0 to ensure the convolution surface is completely inside the
mesh.

We need to apply a numerical search in the N-dimensional
space of the parameters Λ to minimise the above least
squares criterion with the given box constraints. We use
the constrained Levenberg-Marquardt method [KYF05] to
solve this problem. The constrained optimisation in the gen-
eral case may worsen the quality of the approximation, for
instance, it may increase the average distance between the
mesh and the convolution surface. This may happen because
the optimisation will only cause a decrease of the line seg-
ment weights thus decreasing the volume of convolution sur-
face in order to embed it into the mesh. If this effect is unde-
sirable, the segments with decreased weights can be further
subdivided and the optimisation procedure repeated. In such
a case it is possible to improve the quality of the approxima-
tion. The final field produced by the weighted line segments
is defined as follows:

F(p) =
N

∑
i=1

fi(p)λi

Usually the tuning procedure needs to be performed only
once for the character’s bind pose (Fig. 3). In our experi-
ments, it took between 10 and 45 seconds for this operation.
The time required depends on the number of vertices in the
mesh and the number of skeletal branches. We perform tun-
ing only in "problematic areas" (i.e. locations in proximity to
skeletal branches where the implicit surface is not embedded
into the mesh). This helps to significantly reduce the num-
ber of estimation points and leads to a speedup of the fitting
procedure. It is also possible to reduce the number of line
segments whose parameters are tuned. This applies to line
segments which do not produce a significant contribution in
the "problematic areas". These line segments are usually be-
tween 5% and 10% of all line segments. If there is a need
to perform additional tuning during some phases of the ani-
mation, the parameters retrieved after fitting are interpolated
between those frames.

There are default parameters for vertex filtering (vertex fil-
tering is a search for "problematic areas") and default param-
eters for the penalty function, but the user has the option to
change both if he/she is not satisfied with the result. For ex-
ample, the user can control how "deep" the implicit surface
is embedded inside the volume described by the mesh. We
also let the user control parameters for each line-segment or
a group of line segments manually if needed. For some ef-
fects this tuning step is not needed at all.

In our current implementation, we approximate the mesh us-
ing a convolution surface with a constant radius along a line
segment. If there are large variations in distance between the
mesh and its medial axis, a better approximation could be
achieved by using weighted convolution surfaces [JTFP01].
In this case, there is a need to solve a "constrained truncated
cones" fitting problem. When the radii for both endpoints of
the convolution segment are found, they can be used for the
computation of the weighted convolution surface. Such an
approximation would decrease the median distance between

D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling7

(a) (b) (c) (d)

Figure 3: Approximation results: (a,b) Before the optimisation with the implicit surface outside the mesh in the "problematic

areas" (c,d) After the optimisation the fully embedded implicit surface.

the convolution surface and the polygonal mesh. It is worth
observing that, if we wish to apply the blending union op-
eration described in section 4.2, the quality of the initial ap-
proximation does not play a significant part in this process.

The problem of unwanted blending between different parts
of the convolution surface can also be partially solved using
a union operation based on R-functions. Separate lists of line
segments are created for branching skeletal structures. The
field contributions from primitives within the same list are
summed up, thus defining a convolution surface branch:

G j(p) =
N j

∑
i

fi(p)λi

This is the field contribution from the list j, where N j is the
number of line segments in the j-th list. The final implicit
surface is the union of branches with the field computed as
an R-function union of the field contributions from every list:

H j(p) = union(G j(p),H j−1(p)) ,

where j = 1,...,N. If there is still unwanted blending between
the non-branching parts of the skeleton (e.g., lower and up-
per arm), a user specified blending graph can be used.

5.2. Tuning of the initial approximation

After the initial approximation is generated, the user has
the option to modify it to achieve the desired result. This
is needed sometimes because the rigging skeleton used for
the mesh animation can be placed at arbitrary locations in-
side the volume described by the mesh, making it more suit-
able for animation (Figs. 4a, 4b). As the field produced by
the line segments is symmetrical, a better approximation of
the mesh is achieved if the segments are placed closer to
the medial axis of the particular mesh clusters. In this case,
the segments of the convolution surface skeleton have to be
moved away from the original bone positions of the rigging
skeleton as shown in Figs. 4c, 4d. More specifically, the con-
volution line segments migrate from the rigging skeleton to
the medial axis (a 1D curve skeleton). The distance-based
field produced by the extracted curve skeleton is used to

(a) (b) (c) (d)

Figure 4: Tuning of the initial approximation: (a) Original

mesh with the rigging skeletal bones, (b) Initial placement

of bounding volumes, (c) Migration of the convolution skele-

ton, (d) Bounding volumes around the produced convolution

surfaces

determine the direction of migration for each vertex of the
convolution line segments. The elements of the convolution
surface skeleton are still defined relative to the joints of the
rigging skeleton and follow their movement.

This fitting step has to be repeated after the skeleton migra-
tion. In case the user is not interested in the approximation of
particular clusters of the mesh, some of the generated con-
volution segments can be discarded.

5.3. The creation of a convolution surface

The embedded convolution surface is created by using the
segments of the skeleton produced in the above two steps.
For the rendering purposes we use a polygonization proce-
dure, which provides an approximation of the implicit sur-
face as a polygonal mesh. For relatively simple skeletons the
polygonization of the convolution surface can be obtained in
near real-time. As the segments of the convolution skeleton
are transformed relative to the transformation of the rigging
skeleton, the motion of the convolution surface is synchro-
nised with the motion of the animated mesh (Fig. 5).

We automatically perform the approximate convolution sur-

8 D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling

Figure 5: Synchronised motions of the embedded convolu-

tion surfaces during animation

face fitting only for the bind pose at the first frame of the
animation. Thus, during the animation the bounding vol-
umes and the convolution surface itself may not fit inside
the mesh. This could happen because the distances between
the mesh vertices and the bones change noticeably for those
vertices that are influenced significantly by more than one
joints. Such vertices are usually positioned near the skeleton
joints. Performing fitting of the convolution parameters for
each key-frame of the animation can be a time-consuming
process. This also means that each time the user adds a key-
frame to the animation sequence the fitting procedure has
to be repeated for these new frames. Thus, we let the user
choose the key-frames for which refitting needs to take place
- for instance, when the distance between the convolution
surface and the bone exceeds the distance between the bone
and the mesh. The re-estimated parameters are updated at the
key-frames for the convolution primitives and then are inter-
polated during the playback of the animation sequence. This
allows the user to concentrate on the process of mesh anima-
tion by decreasing the delays caused by the implicit surface
re-fitting. Also, there is an opportunity for the user to assign
custom values to the parameters of the implicit surface over
time - for instance, to change the parameter controlling the
overall surface radius. This can be used to achieve a desired
artistic effect for a particular animation sequence.

5.4. Applying the blending operation

As the first application of our technique, we simulate the
interaction of a viscous object with an animated object us-
ing the blending union of two implicit surfaces. As we men-
tioned above, the implicit surface corresponding to the ini-
tial mesh is an embedded convolution surface. The second
implicit surface representing the viscous object can be mod-
elled using a set of implicit primitives. If both defining func-
tions have distance properties, the shape of the surface re-
sulting from the blending operation depends on the distance
between the original implicit surfaces. The further the ob-
jects are from each other the less they are deformed. There
exist three main phases of object interaction: the "continu-
ous interaction" when the two implicit surfaces form a sin-
gle blend shape (see Fig. 6a), the "separation of two objects"
(see Fig. 6b) and "the objects’ reciprocal attraction" result-
ing in the directional deformation which decreases propor-

(a) (b)

(c)

Figure 6: Phases of interaction between animated objects

without (left) and with (right) blending: (a) Two implicit sur-

faces and a single blend shape during blending, (b) The

boundary case before two shapes separate, (c) Two separate

shapes with some deformation showing the objects’ recipro-

cal attraction

(a) (b) (c)

Figure 7: Viscosity: (a) low, (b) medium, (c) high

tionately to the distance between the two objects (see Fig.
6c).

A blending union can dramatically change the resulting sur-
face and its topology. As a result of the mutual deformation,
a part of the convolution surface embedded within the mesh
becomes visible thus contributing to the material interacting
with the mesh. Thus, the quality of the initial approximation
of the mesh by the convolution surface does not play a sig-
nificant part in this application. It is more important just to
fully embed the convolution surface into the mesh when no
deformation is applied.

Modification of the blending parameters produces an effect
visually mimicking the viscous object’s physical parameter
adjustment (Fig. 7). Thus, the user can control a specific
phenomenon by modifying a meaningful set of parameters.
Then, instead of using those abstract parameters of geomet-
ric blending (see sec. 4.2), the user can operate with intuitive
parameters representing liquid viscosity or gravitation. A set
of predefined templates for different materials (such as tar,
honey, oil, etc.) allows the user to achieve easier control over
the interaction process.

6. Implementation and results

In this section we describe the implementation of the pro-
posed approach, present some experimental results and dis-
cuss areas of application.

D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling9

Figure 8: A screenshot of the working environment

6.1. The Maya plug-in

We have implemented the proposed approach as a plug-in for
the Alias Maya 7.0 animation system. We have chosen Maya
as it is a popular tool for modelling and animation used by
a lot of professional artists. Our plug-in requires the user
to specify both the skeletons and polygonal meshes, which
are used to calculate the initial parameters of all the skeletal
primitives of the convolution surface. Given these initial pa-
rameters, we can show the approximate bounding volumes
for the convolution surface. This is done to provide the user
with a finer control over the individual skeletal elements of
the resulting convolution surface. Intermediate results of the
implicit surface polygonization can be seen in the editor win-
dow (Fig. 8) in near real-time. The actual times for a number
of experiments are shown in Table 1. The polygonization do-
main and the grid resolution for this operation can be modi-
fied by the user to control the quality of the resulting implicit
surface and the time needed for its calculation.

6.2. The interaction of an animated object with a

viscous liquid

The result of the interaction between an animated object and
a viscous liquid is represented as an implicit surface. The
user can preview intermediate results as a low or medium-
resolution polygonization of the implicit surface in near real-
time (Fig. 8). A high-resolution polygonization grid can then
be used for the final offline rendering with the additional ap-
plication of complex material and shading properties (Fig.
9). The following algorithm is used to generate an animation
sequence:

• Calculate the positions of the convolution skeletal primi-
tives based on the joint transformation matrix and the field
parameters.

• Calculate the field function produced by the blending be-
tween the set of convolution surfaces and the implicit vis-
cous object.

• Polygonize the resulting implicit surface.

• Render the original deformed mesh and the polygonized
implicit surface.

The example shown in Fig. 10 deals with a mesh animated
with a rigging skeleton, while some parts of the character are
represented by convolution surfaces (Fig. 12).

Figure 9: Adhesive behaviour of the viscous object

6.3. "Supra-natural" liquid behaviour

Another possible application of this technique is the mod-
elling of a special "live" liquid covering the animated meshes
(Fig. 11). In such an animation effect the convolution sur-
face radii are increased over time, which creates the effect of
the liquid flowing up the mesh and gradually engulfing it. It
is possible to automatically generate this sort of animation.
The user just needs to specify the first and last joint of the
skeletal chain as well as the final "thickness" of the liquid
flowing over the mesh.

6.4. Results

In this project our main aim was to achieve near-real time
frame rates while providing flexibility for the end user. Using
the CPU, the average times required for the mesh generation
of various models are shown in Table 1.

We have also used the NVIDIA CUDA SDK thus perform-
ing the computations on the GPU (see Table 2). This is a
basic implementation, where only function values are com-
puted on the GPU, while triangles are still generated on the

Figure 10: Hybrid Andy (the hybrid model with a polygonal

body and an attached "metamorphosing" implicit limb)

10 D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling

Figure 11: Interactions of the meshes and the liquid object

(a) (b)

Figure 12: Metamorphosis (a) Two skeletons (shown in red

and blue) specifying metamorphosis (b) Metamorphosis be-

tween convolution surfaces specified by two different skele-

tons

CPU. Triangle generation is a relatively fast process com-
pared to the function evaluation. Since it was required to
communicate the generated data back to the tool, we needed
to feed the generated triangles back to the RAM. For other
applications, it is possible to perform the process of mesh
generation and rendering completely on the GPU. This task
can also be performed on GPUs without CUDA support. In
the fashion of a GPGPU, the function computations across
the grid can be performed in a pixel/fragment shader. This
data could then be fed back to the RAM or used directly in a
vertex shader [Pas04] or a geometry shader [TSD07] to cre-
ate a mesh. Alternatively, ray-casting can be used to render
the generated volume data directly [TSD07].

There are a number of improvements that could be made to
enhance the performance of our basic GPU implementation.
From our preliminary results, however, it is already apparent
that this sort of task is ideally suited for a parallel real-time
implementation. Given the current hardware design trends
towards an ever increasing number of streaming processors
within a GPU and cores within a CPU, it will be possible, in
the near future, to increase both the resolution and complex-
ity of a model while maintaining real-time rendering rates.

The integration of such functionality into an existing ani-
mation package decreases the learning curve for the user.
The user is free to produce an animation sequence in a way

Grid Cactus (11 Andy (45 Hybrid

resolution for segments) segments) Andy (10

polygonization segments)

20x20x20 25 ms 80 ms 30 ms
30x30x30 80 ms 220 ms 60 ms
50x50x50 310 ms 930 ms 260 ms
70x70x70 810 ms 2580 ms 670 ms

Table 1: Average times for mesh generation (millisec-

onds/frame) on a PC with a Dual Core Intel Xeon (2.66

GHz), 2 GB of RAM; Andy is a mesh model with an em-

bedded convolution surface (Fig. 5), Hybrid Andy is shown

in figure 10)

Grid Cactus (11 Andy (45 Hybrid

resolution for segments) segments) Andy (10

polygonization segments)

32x32x32 10 ms 15 ms 10 ms
64x64x64 30 ms 75 ms 30 ms

Table 2: Average times for mesh generation (millisec-

onds/frame) on an NVIDIA GeForce 8800 Ultra, 768 MB

of RAM

that he is accustomed to within the familiar software envi-
ronment, while having an opportunity to see the results of
his actions in near real-time. Thus, the incorporation of the
plug-in in a general-purpose animation software package al-
lows the user to easily integrate the produced animation into
complex scenes developed using this package.

6.5. Discussion

There are several issues that require additional consideration
and will be addressed in future work. The first is concerned
with the fact that the applied blending operation is based on
the distance properties of the functions defining the initial
geometric objects being blended. The scalar fields produced
by known convolution surface kernels significantly decrease
as the distance from the line segment increases. At a par-
ticular distance from the line segment the values of such a
field are almost equal to zero and no blend shape is gener-
ated at these distances by the blending operation. Thus, it is
hard to model the interaction between the mesh and the vis-
cous object at large distances. In such cases, an ellipsoidal
approximation of the mesh could provide better results.

Additionally as the distance between the two blended ob-
jects increases, the deformation of the convolution surfaces
decreases until these surfaces are again embedded into the
polygonal mesh and are no longer visible. The proposed
method does not allow us to easily model the separation
of droplets of the viscous liquid from the mesh. If this ef-
fect is desired, some additional particles modelling this ef-
fect could be attached to the mesh. It is also possible to add

D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling11

particles to the viscous object. These can improve the visual
quality and dynamism of the resulting image. Simplified par-
ticle based physical models can be applied to the implicit
model to improve the default behaviour of the viscous ob-
ject. A metaball representation of the particles is frequently
used to integrate these particles into the implicit model. Par-
ticle positions retrieved after the physical simulation could
be used to add metaballs to the final model. This would allow
for partial modelling of physically correct behaviour within
the existing geometric model. A hybrid approach could help
to overcome the significant growth of the number of parti-
cles needed to simulate some special effects [CBP05]. In the
case of grid-based fluid simulation, the field produced by a
convolution surface could be used for the creation of force
fields interacting with fluids. It is also possible to employ
temporal coherence. Results of the polygonization retrieved
from the previous frame can be used to find the new grid
cells where the function needs to be evaluated. The function
could be evaluated only in the neighbourhood of the cells
which contained the surface in the previous frame. In this
case the velocity of the skeleton elements needs to be con-
sidered as well, in order not to miss surface changes due
to fast motion of the skeleton. This could significantly im-
prove the performance of the method, especially for lengthy
animation sequences. If the size of the generated convolu-
tion surface is not significantly smaller than the size of the
object modelling the viscous material, volume preservation
techniques may have to be used [CGD97]. We could also
estimate the "amount of intersection" between the bounding
volumes of the skeletal primitives and the viscous object.
This estimation could then be used to adjust the blending
union parameters. These parameters influence the strength
of the deformation which leads to changes in the resulting
surface volume.

Another limitation of our approach, related to the blending
surface, is that of texturing, as texture matching for dynamic
implicit surfaces is still an open research question.

For particular asymmetrical parts of the model (e.g., the hips
or feet of human characters) a better approximation could
be achieved by using line segments producing anisotropic
fields [TZF04]. This would significantly increase the time
needed both to perform the fitting operation and to calculate
the final field produced by a set of line segments. Another
useful option is to let the user draw an outline curve for the
blend shape between the implicit surfaces and then to esti-
mate the parameters of the blending fitting this curve.

7. Conclusions

In this paper we have proposed a method for hybrid mod-
elling involving animated meshes combined with implicit
surfaces. An implicit convolution surface is built around the
rigging skeleton of the animated mesh and is then embed-
ded inside or attached to this mesh. This method allows for

a high level of control over the animation of both the mesh
and the implicit surface components of the model.

We have used this approach to model the adhesive behaviour
of viscoelastic objects in their interaction with moving sur-
faces. The physical effect of the adhesive coating of moving
surfaces by liquids is modelled using geometric blending be-
tween the approximations of the animated surface meshes by
implicit surfaces. Another application is concerned with the
augmentation of animated meshes by attaching implicit sur-
face parts to them.

The proposed method is based on purely geometric proper-
ties and operations on the interacting objects. In contrast to
known fluid dynamics techniques which are based on phys-
ical simulation, our technique is not computationally expen-
sive and allows for near real-time preview using a polygo-
nization of the resulting isosurface. This technique can be
employed in a conventional animation pipeline with near
real-time preview. It might even be suitable for real-time
applications such as computer games where visual results
and low computation times are more important than phys-
ical correctness. We have implemented a prototype plug-in
for a commercial animation system. Our plug-in provides
the user with a number of parameters to specify the desired
behaviour of the animated hybrid model. Our work shows
that not only simple implicits, such as blobs/metaballs, but
more complex implicit surfaces are useful in computer ani-
mation and games. In particular, we have shown that hybrid
models including convolution surfaces show great promise
for modelling dynamic effects.

References

[AGCA06] ALLÈGRE R., GALIN E., CHAINE R., AKKOUCHE

S.: The hybridtree: mixing skeletal implicit surfaces, triangle
meshes, and point sets in a free-form modeling system. Graph.

Models 68, 1 (2006), 42–64.

[AKK∗02] ADZHIEV V., KARTASHEVA E., KUNII T., PASKO

A., SCHMITT B.: Hybrid cellular-functional modelling of het-
erogeneous objects. In Journal of Computing and Information

Science in Engineering, Transactions of the ASME (2002), vol. 4,
pp. 312–322.

[BGA05] BARBIER A., GALIN E., AKKOUCHE S.: A framework
for modeling, animating, and morphing textured implicit models.
Graph. Models 67, 3 (2005), 166–188.

[Bli82] BLINN J. F.: A generalization of algebraic surface draw-
ing. ACM Trans. Graph. 1, 3 (1982), 235–256.

[BP07] BARAN I., POPOVIĆ J.: Automatic rigging and animation
of 3d characters. ACM Trans. Graph. 26, 3 (2007), 72–80.

[BS91] BLOOMENTHAL J., SHOEMAKE K.: Convolution sur-
faces. SIGGRAPH Comput. Graph. 25, 4 (1991), 251–256.

[CBP05] CLAVET S., BEAUDOIN P., POULIN P.: Particle-based
viscoelastic fluid simulation. In SCA ’05: Proceedings of the
2005 ACM SIGGRAPH/Eurographics symposium on Computer

animation (2005), ACM, pp. 219–228.

[CG98] CANI-GASCUEL M.-P.: Layered deformable models
with implicit surfaces. In Graphics Interface (1998), pp. 201–
208.

12 D. Kravtsov, O. Fryazinov, V. Adzhiev, A. Pasko, P. Comninos / Embedded Implicit Stand-ins for Animated Meshes:a Case of Hybrid Modelling

[CGD97] CANI-GASCUEL M.-P., DESBRUN M.: Animation of
deformable models using implicit surfaces. IEEE Transactions

on Visualization and Computer Graphics 3, 1 (1997), 39–50.

[CMT04] CARLSON M., MUCHA P. J., TURK G.: Rigid fluid:
animating the interplay between rigid bodies and fluid. ACM
Trans. Graph. 23, 3 (2004), 377–384.

[FF01] FOSTER N., FEDKIW R.: Practical animation of liquids.
In SIGGRAPH ’01: Proceedings of the 28th annual conference

on Computer graphics and interactive techniques (2001), ACM,
pp. 23–30.

[GBO04] GOKTEKIN T. G., BARGTEIL A. W., O’BRIEN J. F.:
A method for animating viscoelastic fluids. In SIGGRAPH ’04:

ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004),
ACM, pp. 463–468.

[JLW∗05] JIN X., LIU S., WANG C. C. L., FENG J., SUN H.:
Blob-based liquid morphing: Natural phenomena and special ef-
fects. Comput. Animat. Virtual Worlds 16, 3-4 (2005), 391–403.

[JTFP01] JIN X., TAI C.-L., FENG J., PENG Q.: Convolution
surfaces for line skeletons with polynomial weight distributions.
J. Graph. Tools 6, 3 (2001), 17–28.

[KYF05] KANZOW C., YAMASHITA N., FUKUSHIMA M.:
Levenberg-marquardt methods with strong local convergence
properties for solving nonlinear equations with convex con-
straints. J. Comput. Appl. Math. 173, 2 (2005), 321–343.

[LAG01] LECLERCQ A., AKKOUCHE S., GALIN E.: Mixing tri-
angle meshes and implicit surfaces in character animation. In
Proceedings of the Eurographic workshop on Computer ani-

mation and simulation (New York, NY, USA, 2001), Springer-
Verlag New York, Inc., pp. 37–47.

[MS98] MCCORMACK J., SHERSTYUK A.: Creating and render-
ing convolution surfaces. Comput. Graph. Forum 17, 2 (1998),
113–120.

[MTPS04] MCNAMARA A., TREUILLE A., POPOVIĆ Z., STAM

J.: Fluid control using the adjoint method. In SIGGRAPH ’04:

ACM SIGGRAPH 2004 Papers (New York, NY, USA, 2004),
ACM, pp. 449–456.

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G.,
SEIDEL H.-P.: Multi-level partition of unity implicits. ACM

Transactions on Graphics (Proc. SIGGRAPH’03) 22, 3 (2003),
463–470.

[OM95] OPALACH A., MADDOCK S. C.: High level control
of implicit surfaces for character animation. In Proc. 1st In-

ternational Eurographics Workshop on Implicit Surfaces (1995),
pp. 223–232.

[Pas04] PASCUCCI V.: Isosurface computation made simple:
hardware acceleration, adaptive refinement and tetrahedral strip-
ping. In In Joint Eurographics - IEEE TVCG Symposium on Vi-
sualization (VisSym (2004), pp. 293–300.

[PASS95] PASKO A., ADZHIEV V., SOURIN A., SAVCHENKO

V.: Function representation in geometric modeling: Concepts,
implementation and applications. The Visual Computer, 11
(1995), 429–446.

[PPK05] PASKO G., PASKO A., KUNII T.: Bounded blending for
function-based shape modeling. Computer Graphics and Appli-
cations, IEEE 25, 2 (2005), 36–45.

[SP95] SINGH K., PARENT R.: Implicit function based deforma-
tions of polyhedral objects. In Proc. 1st International Eurograph-

ics Workshop on Implicit Surfaces (Apr. 1995), pp. 113–128.

[SPOK95] SAVCHENKO V., PASKO A., OKUNEV O., KUNII T.:
Function representation of solids reconstructed from scattered
surface points and contours. Comput. Graph. Forum 14, 4 (1995),
181–188.

[ST95] SHEN J., THALMANN D.: Interactive shape design using
metaballs and splines. In Implicit Surfaces’95 (1995), pp. 187–
196.

[SY05] SHI L., YU Y.: Taming liquids for rapidly chang-
ing targets. In SCA ’05: Proceedings of the 2005 ACM

SIGGRAPH/Eurographics symposium on Computer animation
(2005), ACM, pp. 229–236.

[TKPR06] THÜREY N., KEISER R., PAULY M., RÜDE U.:
Detail-preserving fluid control. In SCA ’06: Proceedings of the

2006 ACM SIGGRAPH/Eurographics symposium on Computer
animation (2006), Eurographics Association, pp. 7–12.

[TSD07] TATARCHUK N., SHOPF J., DECORO C.: Real-time
isosurface extraction using the gpu programmable geometry
pipeline. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses
(New York, NY, USA, 2007), ACM, pp. 122–137.

[TZF04] TAI C.-L., ZHANG H., FONG J. C.-K.: Prototype mod-
eling from sketched silhouettes based on convolution surfaces.
Comput. Graph. Forum 23, 1 (2004), 71–84.

[WLK03] WEI X., LI W., KAUFMAN A.: Melting and flowing
of viscous volumes. In CASA ’03: Proceedings of the 16th Inter-

national Conference on Computer Animation and Social Agents

(CASA 2003) (2003), IEEE Computer Society, pp. 54–59.

